Winter Sale- Special Discount Limited Time 65% Offer - Ends in 0d 00h 00m 00s - Coupon code: netdisc

Google Professional-Data-Engineer Google Professional Data Engineer Exam Exam Practice Test

Page: 1 / 39
Total 387 questions

Google Professional Data Engineer Exam Questions and Answers

Question 1

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Question 2

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Question # 2

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Question 3

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Question 4

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question 5

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Question 6

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Question 7

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Question 8

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Question 9

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Question 10

You have a table that contains millions of rows of sales data, partitioned by date Various applications and users query this data many times a minute. The query requires aggregating values by using avg. max. and sum, and does not require joining to other tables. The required aggregations are only computed over the past year of data, though you need to retain full historical data in the base tables You want to ensure that the query results always include the latest data from the tables, while also reducing computation cost, maintenance overhead, and duration. What should you do?

Options:

A.

Create a materialized view to aggregate the base table data Configure a partition expiration on the base table to retain only the last one year of partitions.

B.

Create a materialized view to aggregate the base table data include a filter clause to specify the last one year of partitions.

C.

Create a new table that aggregates the base table data include a filter clause to specify the last year of partitions. Set up a scheduled query to recreate the new table every hour.

D.

Create a view to aggregate the base table data Include a filter clause to specify the last year of partitions.

Question 11

You have a Standard Tier Memorystore for Redis instance deployed in a production environment. You need to simulate a Redis instance failover in the most accurate disaster recovery situation, and ensure that the failover has no impact on production data. What should you do?

Options:

A.

Create a Standard Tier Memorystore for Redis instance in a development environment. Initiate a manual failover by using the force-data-loss data protection mode.

B.

Initiate a manual failover by using the limited-data-loss data protection mode to the Memorystore for Redis instance in theproduction environment.

C.

Increase one replica to Redis instance in production environment. Initiate a manual failover by using the force-data-loss dataprotection mode.

D.

Create a Standard Tier Memorystore for Redis instance in the development environment. Initiate a manual failover by using the limited-data-loss data protection mode.

Question 12

You need to create a data pipeline that copies time-series transaction data so that it can be queried from within BigQuery by your data science team for analysis. Every hour, thousands of transactions are updated with a new status. The size of the intitial dataset is 1.5 PB, and it will grow by 3 TB per day. The data is heavily structured, and your data science team will build machine learning models based on this data. You want to maximize performance and usability for your data science team. Which two strategies should you adopt? Choose 2 answers.

Options:

A.

Denormalize the data as must as possible.

B.

Preserve the structure of the data as much as possible.

C.

Use BigQuery UPDATE to further reduce the size of the dataset.

D.

Develop a data pipeline where status updates are appended to BigQuery instead of updated.

E.

Copy a daily snapshot of transaction data to Cloud Storage and store it as an Avro file. Use BigQuery’s support for external data sources to query.

Question 13

You want to build a managed Hadoop system as your data lake. The data transformation process is composed of a series of Hadoop jobs executed in sequence. To accomplish the design of separating storage from compute, you decided to use the Cloud Storage connector to store all input data, output data, and intermediary data. However, you noticed that one Hadoop job runsvery slowly with Cloud Dataproc, when compared with the on-premises bare-metal Hadoop environment (8-core nodes with 100-GB RAM). Analysis shows that this particular Hadoop job is disk I/O intensive. You want to resolve the issue. What should you do?

Options:

A.

Allocate sufficient memory to the Hadoop cluster, so that the intermediary data of that particular Hadoop job can be held in memory

B.

Allocate sufficient persistent disk space to the Hadoop cluster, and store the intermediate data of that particular Hadoop job on native HDFS

C.

Allocate more CPU cores of the virtual machine instances of the Hadoop cluster so that the networking bandwidth for each instance can scale up

D.

Allocate additional network interface card (NIC), and configure link aggregation in the operating system to use the combined throughput when working with Cloud Storage

Question 14

You’ve migrated a Hadoop job from an on-prem cluster to dataproc and GCS. Your Spark job is a complicated analytical workload that consists of many shuffing operations and initial data are parquet files (on average 200-400 MB size each). You see some degradation in performance after the migration to Dataproc, so you’d like to optimize for it. You need to keep in mind that your organization is very cost-sensitive, so you’d like to continue using Dataproc on preemptibles (with 2 non-preemptible workers only) for this workload.

What should you do?

Options:

A.

Increase the size of your parquet files to ensure them to be 1 GB minimum.

B.

Switch to TFRecords formats (appr. 200MB per file) instead of parquet files.

C.

Switch from HDDs to SSDs, copy initial data from GCS to HDFS, run the Spark job and copy results back to GCS.

D.

Switch from HDDs to SSDs, override the preemptible VMs configuration to increase the boot disk size.

Question 15

You currently have a single on-premises Kafka cluster in a data center in the us-east region that is responsible for ingesting messages from IoT devices globally. Because large parts of globe have poor internet connectivity, messages sometimes batch at the edge, come in all at once, and cause a spike in load on your Kafka cluster. This is becoming difficult to manage and prohibitively expensive. What is the Google-recommended cloud native architecture for this scenario?

Options:

A.

Edge TPUs as sensor devices for storing and transmitting the messages.

B.

Cloud Dataflow connected to the Kafka cluster to scale the processing of incoming messages.

C.

An IoT gateway connected to Cloud Pub/Sub, with Cloud Dataflow to read and process the messages from Cloud Pub/Sub.

D.

A Kafka cluster virtualized on Compute Engine in us-east with Cloud Load Balancing to connect to the devices around the world.

Question 16

An aerospace company uses a proprietary data format to store its night data. You need to connect this new data source to BigQuery and stream the data into BigQuery. You want to efficiency import the data into BigQuery where consuming as few resources as possible. What should you do?

Options:

A.

Use a standard Dataflow pipeline to store the raw data m BigQuery and then transform the format later when the data is used

B.

Write a she script that triggers a Cloud Function that performs periodic ETL batch jobs on the new data source

C.

Use Apache Hive to write a Dataproc job that streams the data into BigQuery in CSV format

D.

Use an Apache Beam custom connector to write a Dataflow pipeline that streams the data into BigQuery in Avro format

Question 17

You have a requirement to insert minute-resolution data from 50,000 sensors into a BigQuery table. You expect significant growth in data volume and need the data to be available within 1 minute of ingestion for real-time analysis of aggregated trends. What should you do?

Options:

A.

Use bq load to load a batch of sensor data every 60 seconds.

B.

Use a Cloud Dataflow pipeline to stream data into the BigQuery table.

C.

Use the INSERT statement to insert a batch of data every 60 seconds.

D.

Use the MERGE statement to apply updates in batch every 60 seconds.

Question 18

You have a data pipeline with a Dataflow job that aggregates and writes time series metrics to Bigtable. You notice that data is slow to update in Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. What should you do?

Choose 2 answers

Options:

A.

Configure your Dataflow pipeline to use local execution.

B.

Modify your Dataflow pipeline lo use the Flatten transform before writing to Bigtable.

C.

Modify your Dataflow pipeline to use the CoGrcupByKey transform before writing to Bigtable.

D.

Increase the maximum number of Dataflow workers by setting maxNumWorkers in PipelineOptions.

E.

Increase the number of nodes in the Bigtable cluster.

Question 19

You need to look at BigQuery data from a specific table multiple times a day. The underlying table you are querying is several petabytes in size, but you want to filter your data and provide simple aggregations to downstream users. You want to run queries faster and get up-to-date insights quicker. What should you do?

Options:

A.

Run a scheduled query to pull the necessary data at specific intervals daily.

B.

Create a materialized view based off of the query being run.

C.

Use a cached query to accelerate time to results.

D.

Limit the query columns being pulled in the final result.

Question 20

You are developing a model to identify the factors that lead to sales conversions for your customers. You have completed processing your data. You want to continue through the model development lifecycle. What should you do next?

Options:

A.

Use your model to run predictions on fresh customer input data.

B.

Test and evaluate your model on your curated data to determine how well the model performs.

C.

Monitor your model performance, and make any adjustments needed.

D.

Delineate what data will be used for testing and what will be used for training the model.

Question 21

You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?

Options:

A.

Linear regression

B.

Logistic classification

C.

Recurrent neural network

D.

Feedforward neural network

Question 22

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

Options:

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Question 23

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

Options:

A.

Update the current pipeline and use the drain flag.

B.

Update the current pipeline and provide the transform mapping JSON object.

C.

Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.

D.

Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Question 24

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

Options:

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Question 25

You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?

Options:

A.

Grant the consultant the Viewer role on the project.

B.

Grant the consultant the Cloud Dataflow Developer role on the project.

C.

Create a service account and allow the consultant to log on with it.

D.

Create an anonymized sample of the data for the consultant to work with in a different project.

Question 26

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

Options:

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Question 27

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Question 28

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in thedashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Question 29

You have spent a few days loading data from comma-separated values (CSV) files into the Google BigQuery table CLICK_STREAM. The column DT stores the epoch time of click events. For convenience, you chose a simple schema where every field is treated as the STRING type. Now, you want to compute web session durations of users who visit your site, and you want to change its data type to the TIMESTAMP. You want to minimize the migration effort without making future queries computationally expensive. What should you do?

Options:

A.

Delete the table CLICK_STREAM, and then re-create it such that the column DT is of the TIMESTAMP type. Reload the data.

B.

Add a column TS of the TIMESTAMP type to the table CLICK_STREAM, and populate the numeric values from the column TS for each row. Reference the column TS instead of the column DT from now on.

C.

Create a view CLICK_STREAM_V, where strings from the column DT are cast into TIMESTAMP values. Reference the view CLICK_STREAM_V instead of the table CLICK_STREAM from now on.

D.

Add two columns to the table CLICK STREAM: TS of the TIMESTAMP type and IS_NEW of the BOOLEAN type. Reload all data in append mode. For each appended row, set the value of IS_NEW to true. For future queries, reference the column TS instead of the column DT, with the WHERE clause ensuring that the value of IS_NEW must be true.

E.

Construct a query to return every row of the table CLICK_STREAM, while using the built-in function to cast strings from the column DT into TIMESTAMP values. Run the query into a destination table NEW_CLICK_STREAM, in which the column TS is the TIMESTAMP type. Reference the table NEW_CLICK_STREAM instead of the table CLICK_STREAM from now on. In the future, new data is loaded into the table NEW_CLICK_STREAM.

Question 30

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

Options:

A.

The message body for the sensor event is too large.

B.

Your custom endpoint has an out-of-date SSL certificate.

C.

The Cloud Pub/Sub topic has too many messages published to it.

D.

Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

Question 31

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

Options:

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Question 32

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

Options:

A.

Disable caching by editing the report settings.

B.

Disable caching in BigQuery by editing table details.

C.

Refresh your browser tab showing the visualizations.

D.

Clear your browser history for the past hour then reload the tab showing the virtualizations.

Question 33

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other’s data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

Options:

A.

Load data into different partitions.

B.

Load data into a different dataset for each client.

C.

Put each client’s BigQuery dataset into a different table.

D.

Restrict a client’s dataset to approved users.

E.

Only allow a service account to access the datasets.

F.

Use the appropriate identity and access management (IAM) roles for each client’s users.

Question 34

Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?

Options:

A.

Create a Google Cloud Dataflow job to process the data.

B.

Create a Google Cloud Dataproc cluster that uses persistent disks for HDFS.

C.

Create a Hadoop cluster on Google Compute Engine that uses persistent disks.

D.

Create a Cloud Dataproc cluster that uses the Google Cloud Storage connector.

E.

Create a Hadoop cluster on Google Compute Engine that uses Local SSD disks.

Question 35

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

Options:

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Question 36

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Question 37

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Question 38

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

Options:

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Question 39

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Question 40

Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks. What should you do?

Options:

A.

Run a local version of Jupiter on the laptop.

B.

Grant the user access to Google Cloud Shell.

C.

Host a visualization tool on a VM on Google Compute Engine.

D.

Deploy Google Cloud Datalab to a virtual machine (VM) on Google Compute Engine.

Question 41

You need to compose visualization for operations teams with the following requirements:

Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

The report must not be more than 3 hours delayed from live data.

The actionable report should only show suboptimal links.

Most suboptimal links should be sorted to the top.

Suboptimal links can be grouped and filtered by regional geography.

User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possiblecombination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possiblecombination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Question 42

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Question 43

MJTelco is building a custom interface to share data. They have these requirements:

They need to do aggregations over their petabyte-scale datasets.

They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Question 44

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Question 45

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Question 46

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Question 47

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Question 48

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Question 49

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Question 50

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Question 51

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Question 52

Which is the preferred method to use to avoid hotspotting in time series data in Bigtable?

Options:

A.

Field promotion

B.

Randomization

C.

Salting

D.

Hashing

Question 53

Which action can a Cloud Dataproc Viewer perform?

Options:

A.

Submit a job.

B.

Create a cluster.

C.

Delete a cluster.

D.

List the jobs.

Question 54

When you store data in Cloud Bigtable, what is the recommended minimum amount of stored data?

Options:

A.

500 TB

B.

1 GB

C.

1 TB

D.

500 GB

Question 55

Scaling a Cloud Dataproc cluster typically involves ____.

Options:

A.

increasing or decreasing the number of worker nodes

B.

increasing or decreasing the number of master nodes

C.

moving memory to run more applications on a single node

D.

deleting applications from unused nodes periodically

Question 56

Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?

Options:

A.

categorical_column_with_vocabulary_list

B.

categorical_column_with_hash_bucket

C.

categorical_column_with_unknown_values

D.

sparse_column_with_keys

Question 57

The _________ for Cloud Bigtable makes it possible to use Cloud Bigtable in a Cloud Dataflow pipeline.

Options:

A.

Cloud Dataflow connector

B.

DataFlow SDK

C.

BiqQuery API

D.

BigQuery Data Transfer Service

Question 58

If you want to create a machine learning model that predicts the price of a particular stock based on its recent price history, what type of estimator should you use?

Options:

A.

Unsupervised learning

B.

Regressor

C.

Classifier

D.

Clustering estimator

Question 59

You have a job that you want to cancel. It is a streaming pipeline, and you want to ensure that any data that is in-flight is processed and written to the output. Which of the following commands can you use on the Dataflow monitoring console to stop the pipeline job?

Options:

A.

Cancel

B.

Drain

C.

Stop

D.

Finish

Question 60

Which of the following are examples of hyperparameters? (Select 2 answers.)

Options:

A.

Number of hidden layers

B.

Number of nodes in each hidden layer

C.

Biases

D.

Weights

Page: 1 / 39
Total 387 questions