Labour Day Special Limited Time Flat 70% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 70spcl

Amazon Web Services SAP-C02 AWS Certified Solutions Architect - Professional Exam Practice Test

Page: 1 / 44
Total 435 questions

AWS Certified Solutions Architect - Professional Questions and Answers

Question 1

A company deploys workloads in multiple AWS accounts. Each account has a VPC with VPC flow logs published in text log format to a centralized Amazon S3 bucket. Each log file is compressed with gzjp compression. The company must retain the log files indefinitely.

A security engineer occasionally analyzes the togs by using Amazon Athena to query the VPC flow logs. The query performance is degrading over time as the number of ingested togs is growing. A solutions architect: must improve the performance of the tog analysis and reduce the storage space that the VPC flow logs use.

Which solution will meet these requirements with the LARGEST performance improvement?

Options:

A.

Create an AWS Lambda function to decompress the gzip flies and to compress the tiles with bzip2 compression. Subscribe the Lambda function to an s3: ObiectCrealed;Put S3 event notification for the S3 bucket.

B.

Enable S3 Transfer Acceleration for the S3 bucket. Create an S3 Lifecycle configuration to move files to the S3 Intelligent-Tiering storage class as soon as the ties are uploaded

C.

Update the VPC flow log configuration to store the files in Apache Parquet format. Specify Hourly partitions for the log files.

D.

Create a new Athena workgroup without data usage control limits. Use Athena engine version 2.

Question 2

A company is deploying a new API to AWS. The API uses Amazon API Gateway with a Regional API endpoint and an AWS Lambda function for hosting. The API retrieves data from an external vendor API, stores data in an Amazon DynamoDB global table, and retrieves data from the DynamoDB global table. The API key for the vendor's API is stored in AWS Secrets Manager and is encrypted with a customer managed key in AWS Key Management Service (AWS KMS). The company has deployed its own API into a single AWS Region.

A solutions architect needs to change the API components of the company's API to ensure that the components can run across multiple Regions in an active-active configuration.

Which combination of changes will meet this requirement with the LEAST operational overhead? (Choose three.)

Options:

A.

Deploy the API to multiple Regions. Configure Amazon Route 53 with custom domain names that route traffic to each Regional API endpoint. Implement a Route 53 multivalue answer routing policy.

B.

Create a new KMS multi-Region customer managed key. Create a new KMS customer managed replica key in each in-scope Region.

C.

Replicate the existing Secrets Manager secret to other Regions. For each in-scope Region's replicated secret, select the appropriate KMS key.

D.

Create a new AWS managed KMS key in each in-scope Region. Convert an existing key to a multi-Region key. Use the multi-Region key in other Regions.

E.

Create a new Secrets Manager secret in each in-scope Region. Copy the secret value from the existing Region to the new secret in each in-scope Region.

F.

Modify the deployment process for the Lambda function to repeat the deployment across in-scope Regions. Turn on the multi-Region option for the existing API. Select the Lambda function that is deployed in each Region as the backend for the multi-Region API.

Question 3

A company is running a workload that consists of thousands of Amazon EC2 instances. The workload is running in a VPC that contains several public subnets and private subnets. The public subnets have a route for 0.0.0.0/0 to an existing internet gateway. The private subnets have a route for 0.0.0.0/0 to an existing NAT gateway.

A solutions architect needs to migrate the entire fleet of EC2 instances to use IPv6. The EC2 instances that are in private subnets must not be accessible from the public internet.

What should the solutions architect do to meet these requirements?

Options:

A.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Update all the VPC route tables, and add a route for ::/0 to the internet gateway.

B.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Update the VPC route tables for all private subnets, and add a route for ::/0 to the NAT gateway.

C.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Create an egress-only internet gateway. Update the VPC route tables for all private subnets, and add a route for ::/0 to the egress-only internet gateway.

D.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Create a new NAT gateway, and enable IPv6 support. Update the VPC route tables for all private subnets, and add a route for ::/0 to the IPv6-enabled NAT gateway.

Question 4

A company is migrating an application to the AWS Cloud. The application runs in an on-premises data center and writes thousands of images into a mounted NFS file system each night. After the company migrates the application, the company will host the application on an Amazon EC2 instance with a mounted Amazon

Elastic File System (Amazon EFS) file system.

The company has established an AWS Direct Connect connection to AWS. Before the migration cutover, a solutions architect must build a process that will replicate the newly created on-premises images to the EFS file system.

What is the MOST operationally efficient way to replicate the images?

Options:

A.

Configure a periodic process to run the aws s3 sync command from the on-premises file system to Amazon S3. Configure an AWS Lambda function to process event notifications from Amazon S3 and copy the images from Amazon S3 to the EFS file system.

B.

Deploy an AWS Storage Gateway file gateway with an NFS mount point. Mount the file gateway file system on the on-premises server. Configure a process to periodically copy the images to the mount point.

C.

Deploy an AWS DataSync agent to an on-premises server that has access to the NFS file system. Send data over the Direct Connect connection to an S3 bucket by using public VIF. Configure an AWS Lambda function to process event notifications from Amazon S3 and copy the images from Amazon S3 to the EFS file system.

D.

Deploy an AWS DataSync agent to an on-premises server that has access to the NFS file system. Send data over the Direct Connect connection to an AWS PrivateLink int

Question 5

A company has automated the nightly retraining of its machine learning models by using AWS Step Functions. The workflow consists of multiple steps that use AWS Lambda Each step can fail for various reasons and any failure causes a failure of the overall workflow

A review reveals that the retraining has failed multiple nights in a row without the company noticing the failure A solutions architect needs to improve the workflow so that notifications are sent for all types of failures in the retraining process

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE)

Options:

A.

Create an Amazon Simple Notification Service (Amazon SNS) topic with a subscription of type "Email" that targets the team's mailing list.

B.

Create a task named "Email" that forwards the input arguments to the SNS topic

C.

Add a Catch field all Task Map. and Parallel states that have a statement of "Error Equals": [ “States. ALL”] and "Next": "Email".

D.

Add a new email address to Amazon Simple Email Service (Amazon SES). Verify the email address.

E.

Create a task named "Email" that forwards the input arguments to the SES email address

F.

Add a Catch field to all Task Map, and Parallel states that have a statement of "Error Equals": [ "states. Runtime”] and "Next": "Email".

Question 6

A company is planning to migrate an on-premises data center to AWS. The company currently hosts the data center on Linux-based VMware VMs. A solutions architect must collect information about network dependencies between the VMs. The information must be in the form of a diagram that details host IP addresses, hostnames, and network connection information.

Which solution will meet these requirements?

Options:

A.

Use AWS Application Discovery Service. Select an AWS Migration Hub home AWS Region. Install the AWS Application Discovery Agent on the on-premises servers for data collection. Grant permissions to Application Discovery Service to use the Migration Hub network diagrams.

B.

Use the AWS Application Discovery Service Agentless Collector for server data collection. Export the network diagrams from the AWS Migration Hub in .png format.

C.

Install the AWS Application Migration Service agent on the on-premises servers for data collection. Use AWS Migration Hub data in Workload Discovery on AWS to generate network diagrams.

D.

Install the AWS Application Migration Service agent on the on-premises servers for data collection. Export data from AWS Migration Hub in .csv format into an Amazon CloudWatch dashboard to generate network diagrams.

Question 7

A financial services company runs a complex, multi-tier application on Amazon EC2 instances and AWS Lambda functions. The application stores temporary data in Amazon S3. The S3 objects are valid for only 45 minutes and are deleted after 24 hours.

The company deploys each version of the application by launching an AWS CloudFormation stack. The stack creates all resources that are required to run the application. When the company deploys and validates a new application version, the company deletes the CloudFormation stack of the old version.

The company recently tried to delete the CloudFormation stack of an old application version, but the operation failed. An analysis shows that CloudFormation failed to delete an existing S3 bucket. A solutions architect needs to resolve this issue without making major changes to the application's architecture.

Which solution meets these requirements?

Options:

A.

Implement a Lambda function that deletes all files from a given S3 bucket. Integrate this Lambda function as a custom resource into the CloudFormation stack. Ensure that the custom resource has a DependsOn attribute that points to the S3 bucket's resource.

B.

Modify the CloudFormation template to provision an Amazon Elastic File System (Amazon EFS) file system to store the temporary files there instead of in Amazon S3. Configure the Lambda functions to run in the same VPC as the file system. Mount the file system to the EC2 instances and Lambda functions.

C.

Modify the CloudFormation stack to create an S3 Lifecycle rule that expires all objects 45 minutes after creation. Add a DependsOn attribute that points to the S3 bucket's resource.

D.

Modify the CloudFormation stack to attach a DeletionPolicy attribute with a value of Delete to the S3 bucket.

Question 8

A company has a solution that analyzes weather data from thousands of weather stations. The weather stations send the data over an Amazon API Gateway REST API that has an AWS Lambda function integration. The Lambda function calls a third-party service for data pre-processing. The third-party service gets overloaded and fails the pre-processing, causing a loss of data.

A solutions architect must improve the resiliency of the solution. The solutions architect must ensure that no data is lost and that data can be processed later if failures occur.

What should the solutions architect do to meet these requirements?

Options:

A.

Create an Amazon Simple Queue Service (Amazon SQS) queue. Configure the queue as the dead-letter queue for the API.

B.

Create two Amazon Simple Queue Service (Amazon SQS) queues: a primary queue and a secondary queue. Configure the secondary queue as the dead-letter queue for the primary queue. Update the API to use a new integration to the primary queue. Configure the Lambda function as the invocation target for the primary queue.

C.

Create two Amazon EventBridge event buses: a primary event bus and a secondary event bus. Update the API to use a new integration to the primary event bus. Configure an EventBridge rule to react to all events on the primary event bus. Specify the Lambda function as the target of the rule. Configure the secondary event bus as the failure destination for the Lambda function.

D.

Create a custom Amazon EventBridge event bus. Configure the event bus as the failure destination for the Lambda function.

Question 9

A company has hundreds of AWS accounts. The company uses an organization in AWS Organizations to manage all the accounts. The company has turned on all features.

A finance team has allocated a daily budget for AWS costs. The finance team must receive an email notification if the organization's AWS costs exceed 80% of the allocated budget. A solutions architect needs to implement a solution to track the costs and deliver the notifications.

Which solution will meet these requirements?

Options:

A.

In the organization's management account, use AWS Budgets to create a budget that has a daily period. Add an alert threshold and set the value to 80%. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

B.

In the organization’s management account, set up the organizational view feature for AWS Trusted Advisor. Create an organizational view report for cost optimization. Set an alert threshold of 80%. Configure notification preferences. Add the email addresses of the finance team.

C.

Register the organization with AWS Control Tower. Activate the optional cost control (guardrail). Set a control (guardrail) parameter of 80%. Configure control (guardrail) notification preferences. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

D.

Configure the member accounts to save a daily AWS Cost and Usage Report to an Amazon S3 bucket in the organization's management account. Use Amazon EventBridge to schedule a daily Amazon Athena query to calculate the organization’s costs. Configure Athena to send an Amazon CloudWatch alert if the total costs are more than 80% of the allocated budget. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

Question 10

A company hosts a web application on AWS in the us-east-1 Region The application servers are distributed across three Availability Zones behind an Application Load Balancer. The database is hosted in a MySQL database on an Amazon EC2 instance A solutions architect needs to design a Cross-Region data recovery solution using AWS services with an RTO of less than 5 minutes and an RPO of less than 1 minute. The solutions architect is deploying application servers in us-west-2, and has configured Amazon Route 53 hearth checks and DNS failover to us-west-2

Which additional step should the solutions architect take?

Options:

A.

Migrate the database to an Amazon RDS tor MySQL instance with a cross-Region read replica in us-west-2

B.

Migrate the database to an Amazon Aurora global database with the primary in us-east-1 and the secondary in us-west-2

C.

Migrate the database to an Amazon RDS for MySQL instance with a Multi-AZ deployment.

D.

Create a MySQL standby database on an Amazon EC2 instance in us-west-2

Question 11

An online retail company hosts its stateful web-based application and MySQL database in an on-premises data center on a single server. The company wants to increase its customer base by conducting more marketing campaigns and promotions. In preparation, the company wants to migrate its application and database to AWS to increase the reliability of its architecture.

Which solution should provide the HIGHEST level of reliability?

Options:

A.

Migrate the database to an Amazon RDS MySQL Multi-AZ DB instance. Deploy the application in an Auto Scaling group on Amazon EC2 instances behind an Application Load Balancer. Store sessions in Amazon Neptune.

B.

Migrate the database to Amazon Aurora MySQL. Deploy the application in an Auto Scaling group on Amazon EC2 instances behind an Application Load Balancer. Store sessions in an Amazon ElastiCache for Redis replication group.

C.

Migrate the database to Amazon DocumentDB (with MongoDB compatibility). Deploy the application in an Auto Scaling group on Amazon EC2 instances behind a Network Load Balancer. Store sessions in Amazon Kinesis Data Firehose.

D.

Migrate the database to an Amazon RDS MariaDB Multi-AZ DB instance. Deploy the application in an Auto Scaling group on Amazon EC2 instances behind an Application Load Balancer. Store sessions in Amazon ElastiCache for Memcached.

Question 12

A company uses AWS Organizations to manage its AWS accounts. The company needs a list of all its Amazon EC2 instances that have underutilized CPU or memory usage. The company also needs recommendations for how to downsize these underutilized instances.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Install a CPU and memory monitoring tool from AWS Marketplace on all the EC2 Instances. Store the findings in Amazon S3. Implement a Python script to identify underutilized instances. Reference EC2 instance pricing information for recommendations about downsizing options.

B.

Install the Amazon CloudWatch agent on all the EC2 instances by using AWS Systems Manager. Retrieve the resource op! nization recommendations from AWS Cost Explorer in the organization's management account. Use the recommendations to downsize underutilized instances in all accounts of the organization.

C.

Install the Amazon CloudWatch agent on all the EC2 instances by using AWS Systems Manager. Retrieve the resource optimization recommendations from AWS Cost Explorer in each account of the organization. Use the recommendations to downsize underutilized instances in all accounts of the organization.

D.

Install the Amazon CloudWatch agent on all the EC2 instances by using AWS Systems Manager Create an AWS Lambda function to extract CPU and memory usage from all the EC2 instances. Store the findings as files in Amazon S3. Use Amazon Athena to find underutilized instances. Reference EC2 instance pricing information for recommendations about downsizing options.

Question 13

A company runs applications in hundreds of production AWS accounts. The company uses AWS Organizations with all features enabled and has a centralized backup

operation that uses AWS Backup.

The company is concerned about ransomware attacks. To address this concern, the company has created a new policy that all backups must be resilient to breaches of privileged-user credentials in any production account.

Which combination of steps will meet this new requirement? (Select THREE.)

Options:

A.

Implement cross-account backup with AWS Backup vaults in designated non-production accounts.

B.

Add an SCP that restricts the modification of AWS Backup vaults.

C.

Implement AWS Backup Vault Lock in compliance mode.

D.

Configure the backup frequency, lifecycle, and retention period to ensure that at least one backup always exists in the cold tier.

E.

Configure AWS Backup to write all backups to an Amazon S3 bucket in a designated non-production account. Ensure that the S3 bucket has S3 Object Lock enabled.

F.

Implement least privilege access for the IAM service role that is assigned to AWS Backup.

Question 14

A company wants to migrate an Amazon Aurora MySQL DB cluster from an existing AWS account to a new AWS account in the same AWS Region. Both accounts are members of the same organization in AWS Organizations.

The company must minimize database service interruption before the company performs DNS cutover to the new database.

Which migration strategy will meet this requirement?

Options:

A.

Take a snapshot of the existing Aurora database. Share the snapshot with the new AWS account. Create an Aurora DB cluster in the new account from the snapshot.

B.

Create an Aurora DB cluster in the new AWS account. Use AWS Database Migration Service (AWS DMS) to migrate data between the two Aurora DB clusters.

C.

Use AWS Backup to share an Aurora database backup from the existing AWS account to the new AWS account. Create an Aurora DB cluster in the new AWS account from the snapshot.

D.

Create an Aurora DB cluster in the new AWS account. Use AWS Application Migration Service to migrate data between the two Aurora DB clusters.

Question 15

An ecommerce company runs an application on AWS. The application has an Amazon API Gateway API that invokes an AWS Lambda function. The data is stored in an Amazon RDS for PostgreSQL DB instance.

During the company's most recent flash sale, a sudden increase in API calls negatively affected the application's performance. A solutions architect reviewed the Amazon CloudWatch metrics during that time and noticed a significant increase in Lambda invocations and database connections. The CPU utilization also was high on the DB instance.

What should the solutions architect recommend to optimize the application's performance?

Options:

A.

Increase the memory of the Lambda function. Modify the Lambda function to close the database connections when the data is retrieved.

B.

Add an Amazon ElastiCache for Redis cluster to store the frequently accessed data from the RDS database.

C.

Create an RDS proxy by using the Lambda console. Modify the Lambda function to use the proxy endpoint.

D.

Modify the Lambda function to connect to the database outside of the function's handler. Check for an existing database connection before creating a new connection.

Question 16

A data analytics company has an Amazon Redshift cluster that consists of several reserved nodes. The cluster is experiencing unexpected bursts of usage because a team of employees is compiling a deep audit analysis report. The queries to generate the report are complex read queries and are CPU intensive.

Business requirements dictate that the cluster must be able to service read and write queries at all times. A solutions architect must devise a solution that accommodates the bursts of usage.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Provision an Amazon EMR cluster. Offload the complex data processing tasks.

B.

Deploy an AWS Lambda function to add capacity to the Amazon Redshift cluster by using a classic resize operation when the cluster's CPU metrics in Amazon CloudWatch reach 80%.

C.

Deploy an AWS Lambda function to add capacity to the Amazon Redshift cluster by using an elastic resize operation when the cluster's CPU metrics in Amazon CloudWatch reach 80%.

D.

Turn on the Concurrency Scaling feature for the Amazon Redshift cluster.

Question 17

An environmental company is deploying sensors in major cities throughout a country to measure air quality The sensors connect to AWS loT Core to ingest timesheets data readings. The company stores the data in Amazon DynamoDB

For business continuity the company must have the ability to ingest and store data in two AWS Regions

Which solution will meet these requirements?

Options:

A.

Create an Amazon Route 53 alias failover routing policy with values for AWS loT Core data endpoints in both Regions Migrate data to Amazon Aurora global tables

B.

Create a domain configuration for AWS loT Core in each Region Create an Amazon Route 53 latency-based routing policy Use AWS loT Core data endpoints in both Regions as values Migrate the data to Amazon MemoryDB for Radis and configure Cross-Region replication

C.

Create a domain configuration for AWS loT Core in each. Region Create an Amazon Route 53 health check that evaluates domain configuration health Create a failover routing policy with values for the domain name from the AWS loT Core domain configurations Update the DynamoDB table to a global table

D.

Create an Amazon Route 53 latency-based routing policy. Use AWS loT Core data endpoints in both Regions as values. Configure DynamoDB streams and Cross-Region data replication

Question 18

A company operates a fleet of servers on premises and operates a fleet of Amazon EC2 instances in its organization in AWS Organizations. The company's AWS accounts contain hundreds of VPCs. The company wants to connect its AWS accounts to its on-premises network. AWS Site-to-Site VPN connections are already established to a single AWS account. The company wants to control which VPCs can communicate with other VPCs.

Which combination of steps will achieve this level of control with the LEAST operational effort? (Choose three.)

Options:

A.

Create a transit gateway in an AWS account. Share the transit gateway across accounts by using AWS Resource Access Manager (AWS RAM).

B.

Configure attachments to all VPCs and VPNs.

C.

Set up transit gateway route tables. Associate the VPCs and VPNs with the route tables.

D.

Configure VPC peering between the VPCs.

E.

Configure attachments between the VPCs and VPNs.

F.

Set up route tables on the VPCs and VPNs.

Question 19

A company is using AWS CodePipeline for the CI/CD of an application to an Amazon EC2 Auto Scaling group. All AWS resources are defined in AWS

CloudFormation templates. The application artifacts are stored in an Amazon S3 bucket and deployed to the Auto Scaling group using instance user data scripts.

As the application has become more complex, recent resource changes in the CloudFormation templates have caused unplanned downtime.

How should a solutions architect improve the CI/CD pipeline to reduce the likelihood that changes in the templates will cause downtime?

Options:

A.

Adapt the deployment scripts to detect and report CloudFormation error conditions when performing deployments. Write test plans for a testing team to execute in a non-production environment before approving the change for production.

B.

Implement automated testing using AWS CodeBuild in a test environment. Use CloudFormation change sets to evaluate changes before deployment. Use AWS CodeDeploy to leverage blue/green deployment patterns to allow evaluations and the ability to revert changes, if needed.

C.

Use plugins for the integrated development environment (IDE) to check the templates for errors, and use the AWS CLI to validate that the templates are correct. Adapt the deployment code to check for error conditions and generate notifications on errors. Deploy to a test environment and execute a manual test plan before approving the change for production.

D.

Use AWS CodeDeploy and a blue/green deployment pattern with CloudFormation to replace the user data deployment scripts. Have the operators log in to running instances and go through a manual test plan to verify the application is running as expected.

Question 20

An online survey company runs its application in the AWS Cloud. The application is distributed and consists of microservices that run in an automatically scaled Amazon Elastic Container Service (Amazon ECS) cluster. The ECS cluster is a target for an Application Load Balancer (ALB). The ALB is a custom origin for an Amazon CloudFront distribution.

The company has a survey that contains sensitive data. The sensitive data must be encrypted when it moves through the application. The application's data-handling microservice is the only microservice that should be able to decrypt the data.

Which solution will meet these requirements?

Options:

A.

Create a symmetric AWS Key Management Service (AWS KMS) key that is dedicated to the data-handling microservice. Create a field-level encryption profile and a configuration. Associate the KMS key and the configuration with the CloudFront cache behavior.

B.

Create an RSA key pair that is dedicated to the data-handling microservice. Upload the public key to the CloudFront distribution. Create a field-level encryption profile and a configuration. Add the configuration to the CloudFront cache behavior.

C.

Create a symmetric AWS Key Management Service (AWS KMS) key that is dedicated to the data-handling microservice. Create a Lambda@Edge function. Program the function to use the KMS key to encrypt the sensitive data.

D.

Create an RSA key pair that is dedicated to the data-handling microservice. Create a Lambda@Edge function. Program the function to use the private key of the RSA key pair to encrypt the sensitive data.

Question 21

A company is using AWS Control Tower to manage AWS accounts in an organization in AWS Organizations. The company has an OU that contains accounts. The company

must prevent any new or existing Amazon EC2 instances in the OUs accounts from gaining a public IP address.

Which solution will meet these requirements?

Options:

A.

Configure all instances in each account in the OU to use AWS Systems Manager. Use a Systems Manager Automation runbook to prevent public IP addresses from being attached to the instances.

B.

Implement the AWS Control Tower proactive control to check whether instances in the OU's accounts have a public IP address. Set the AssociatePubIicIpAddress property to False. Attach the proactive control to the OU.

C.

Create an SCP that prevents the launch of instances that have a public IP address. Additionally, configure the SCP to prevent the attachment of a public IP address to existing instances. Attach the SCP to the OU.

D.

Create an AWS Config custom rule that detects instances that have a public IP address. Configure a remediation action that uses an AWS Lambda function to detach the public IP addresses from the instances.

Question 22

A company is preparing to deploy an Amazon Elastic Kubernetes Service (Amazon EKS) cluster for a workload. The company expects the cluster to support an

unpredictable number of stateless pods. Many of the pods will be created during a short time period as the workload automatically scales the number of replicas that the workload uses.

Which solution will MAXIMIZE node resilience?

Options:

A.

Use a separate launch template to deploy the EKS control plane into a second cluster that is separate from the workload node groups.

B.

Update the workload node groups. Use a smaller number of node groups and larger instances in the node groups.

C.

Configure the Kubernetes Cluster Autoscaler to ensure that the compute capacity of the workload node groups stays under provisioned.

D.

Configure the workload to use topology spread constraints that are based on Availability Zone.

Question 23

A company is deploying a new cluster for big data analytics on AWS. The cluster will run across many Linux Amazon EC2 instances that are spread across multiple Availability Zones.

All of the nodes in the cluster must have read and write access to common underlying file storage. The file storage must be highly available, must be resilient, must be compatible with the Portable Operating System Interface (POSIX). and must accommodate high levels of throughput.

Which storage solution will meet these requirements?

Options:

A.

Provision an AWS Storage Gateway file gateway NFS file share that is attached to an Amazon S3 bucket. Mount the NFS file share on each EC2 instance in the duster.

B.

Provision a new Amazon Elastic File System (Amazon EFS) file system that uses General Purpose performance mode. Mount the EFS file system on each EC2 instance in the cluster.

C.

Provision a new Amazon Elastic Block Store (Amazon EBS) volume that uses the io2 volume type. Attach the EBS volume to all of the EC2 instances in the cluster.

D.

Provision a new Amazon Elastic File System (Amazon EFS) file system that uses Max I/O performance mode. Mount the EFS file system on each EC2 instance in the cluster.

Question 24

A solutions architect is designing an application to accept timesheet entries from employees on their mobile devices. Timesheets will be submitted weekly, with most of the submissions occurring on Friday. The data must be stored in a format that allows payroll administrators to run monthly reports The infrastructure must be highly available and scale to match the rate of incoming data and reporting requests.

Which combination of steps meets these requirements while minimizing operational overhead? (Select TWO}

Options:

A.

Deploy the application to Amazon EC2 On-Demand Instances with load balancing across multiple Availability Zones. Use scheduled Amazon EC2 Auto Scaling to add capacity before the high volume of submissions on Fridays

B.

Deploy the application in a container using Amazon Elastic Container Service (Amazon ECS) with load balancing across multiple Availability Zones Use scheduled Service Auto Scaling to add capacity before the high volume of submissions on Fridays

C.

Deploy the application front end to an Amazon S3 bucket served by Amazon CloudFront Deploy the application backend using Amazon API Gateway with an AWS Lambda proxy integration

D.

Store the timesheet submission data in Amazon Redshift Use Amazon QuickSight to generate the reports using Amazon Redshift as the data source

E.

Store the timesheet submission data in Amazon S3. Use Amazon Athena and Amazon QuickSight to generate the reports using Amazon S3 as the data source.

Question 25

A solutions architect needs to migrate an on-premises legacy application to AWS. The application runs on two servers behind a bad balancer. The application requires a license file that is associated with the MAC address of the server's network adapter. It takes the software vendor 12 hours to send new license files. The application also uses configuration files with a static IP address to access a database host names are not supported.

Given these requirements. which combination of steps should be taken to implement highly available architecture for the application servers in AWS? (Select TWO.)

Options:

A.

Create a pool of ENIs. Request license files from the vendor for the pool, and store the license files in Amazon $3. Create a bootstrap automation script to download a license file and attach the corresponding ENI to an Amazon EC2 instance.

B.

Create a pool of ENIs. Request license files from the vendor for the pool, store the license files on an Amazon EC2 instance. Create an AMI from the instance and use this AMI for all future EC2

C.

Create a bootstrap automation script to request a new license file from the vendor. When the response is received, apply the license file to an Amazon EC2 instance.

D.

Edit the bootstrap automation script to read the database server IP address from the AWS Systems Manager Parameter Store. and inject the value into the local configuration files.

E.

Edit an Amazon EC2 instance to include the database server IP address in the configuration files and re-create the AMI to use for all future EC2 instances.

Question 26

A company plans to deploy a new private intranet service on Amazon EC2 instances inside a VPC. An AWS Site-to-Site VPN connects the VPC to the company's on-premises network. The new service must communicate with existing on-premises services The on-premises services are accessible through the use of hostnames that reside in the company example DNS zone This DNS zone is wholly hosted on premises and is available only on the company's private network.

A solutions architect must ensure that the new service can resolve hostnames on the company example domain to integrate with existing services.

Which solution meets these requirements?

Options:

A.

Create an empty private zone in Amazon Route 53 for company example Add an additional NS record to the company's on-premises company example zone that points to the authoritative name servers for the new private zone in Route 53

B.

Turn on DNS hostnames for the VPC Configure a new outbound endpoint with Amazon Route 53 Resolver. Create a Resolver rule to forward requests for company example to the on-premises name servers

C.

Turn on DNS hostnames for the VPC Configure a new inbound resolver endpoint with Amazon Route 53 Resolver. Configure the on-premises DNS server to forward requests for company example to the new resolver.

D.

Use AWS Systems Manager to configure a run document that will install a hosts file that contains any required hostnames. Use an Amazon EventBndge rule to run the document when an instance is entering the running state.

Question 27

A company operates quick-service restaurants. The restaurants follow a predictable model with high sales traffic for 4 hours daily Sales traffic is lower outside of those peak hours.

The point of sale and management platform is deployed in the AWS Cloud and has a backend that is based on Amazon DynamoDB. The database table uses provisioned throughput mode with 100.000 RCUs and 80.000 WCUs to match known peak resource consumption.

The company wants to reduce its DynamoDB cost and minimize the operational overhead for the IT staff.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Reduce the provisioned RCUs and WCUs

B.

Change the DynamoDB table to use on-demand capacity.

C.

Enable Dynamo DB auto scaling tor the table

D.

Purchase 1-year reserved capacity that is sufficient to cover the peak load for 4 hours each day.

Question 28

A large company is migrating ils entire IT portfolio to AWS. Each business unit in the company has a standalone AWS account that supports both development and test environments. New accounts to support production workloads will be needed soon.

The finance department requires a centralized method for payment but must maintain visibility into each group's spending to allocate costs.

The security team requires a centralized mechanism to control 1AM usage in all the company's accounts.

What combination of the following options meet the company's needs with the LEAST effort? (Select TWO.)

Options:

A.

Use a collection of parameterized AWS CloudFormation templates defining common 1AM permissions that are launched into each account. Require all new and existing accounts to launch the appropriate stacks to enforce the least privilege model.

B.

Use AWS Organizations to create a new organization from a chosen payer account and define an organizational unit hierarchy. Invite the existing accounts to join the organization and create new accounts using Organizations.

C.

Require each business unit to use its own AWS accounts. Tag each AWS account appropriately and enable Cost Explorer to administer chargebacks.

D.

Enable all features of AWS Organizations and establish appropriate service control policies that filter 1AM permissions for sub-accounts.

E.

Consolidate all of the company's AWS accounts into a single AWS account. Use tags for billing purposes and the lAM's Access Advisor feature to enforce the least privilege model.

Question 29

A company is migrating an application from on-premises infrastructure to the AWS Cloud. During migration design meetings, the company expressed concerns about the availability and recovery options for its legacy Windows file server. The file server contains sensitive business-critical data that cannot be recreated in the event of data corruption or data loss. According to compliance requirements, the data must not travel across the public internet. The company wants to move to AWS managed services where possible.

The company decides to store the data in an Amazon FSx for Windows File Server file system. A solutions architect must design a solution that copies the data to another AWS Region for disaster recovery (DR) purposes.

Which solution will meet these requirements?

Options:

A.

Create a destination Amazon S3 bucket in the DR Region. Establish connectivity between the FSx for Windows File Server file system in the primary Region and the S3 bucket in the DR Region by using Amazon FSx File Gateway. Configure the S3 bucket as a continuous backup source in FSx File Gateway.

B.

Create an FSx for Windows File Server file system in the DR Region. Establish connectivity between the VPC in the primary Region and the VPC in the DR Region by using AWS Site-to-Site VPN. Configure AWS DataSync to communicate by using VPN endpoints.

C.

Create an FSx for Windows File Server file system in the DR Region. Establish connectivity between the VPC in the primary Region and the VPC in the DR Region by using VPC peering. Configure AWS DataSync to communicate by using interface VPC endpoints with AWS PrivateLink.

D.

Create an FSx for Windows File Server file system in the DR Region. Establish connectivity between the VPC in the primary Region and the VPC in the DR Region by using AWS Transit Gateway in each Region. Use AWS Transfer Family to copy files between the FSx for Windows File Server file system in the primary Region and the FSx for Windows File Server file system in the DR Region over the private AWS backbone network.

Question 30

A solutions architect is preparing to deploy a new security tool into several previously unused AWS Regions. The solutions architect will deploy the tool by using an AWS CloudFormation stack set. The stack set's template contains an 1AM role that has a custom name. Upon creation of the stack set. no stack instances are created successfully.

What should the solutions architect do to deploy the stacks successfully?

Options:

A.

Enable the new Regions in all relevant accounts. Specify the CAPABILITY_NAMED_IAM capability during the creation of the stack set.

B.

Use the Service Quotas console to request a quota increase for the number of CloudFormation stacks in each new Region in all relevant accounts. Specify the CAPABILITYJAM capability during the creation of the stack set.

C.

Specify the CAPABILITY_NAMED_IAM capability and the SELF_MANAGED permissions model during the creation of the stack set.

D.

Specify an administration role ARN and the CAPABILITYJAM capability during the creation of the stack set.

Question 31

A company needs to monitor a growing number of Amazon S3 buckets across two AWS Regions. The company also needs to track the percentage of objects that are

encrypted in Amazon S3. The company needs a dashboard to display this information for internal compliance teams.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a new S3 Storage Lens dashboard in each Region to track bucket and encryption metrics. Aggregate data from both Region dashboards into a single dashboard in Amazon QuickSight for the compliance teams.

B.

Deploy an AWS Lambda function in each Region to list the number of buckets and the encryption status of objects. Store this data in Amazon S3. Use Amazon Athena queries to display the data on a custom dashboard in Amazon QuickSight for the compliance teams.

C.

Use the S3 Storage Lens default dashboard to track bucket and encryption metrics. Give the compliance teams access to the dashboard directly in the S3 console.

D.

Create an Amazon EventBridge rule to detect AWS Cloud Trail events for S3 object creation. Configure the rule to invoke an AWS Lambda function to record encryption metrics in Amazon DynamoDB. Use Amazon QuickSight to display the metrics in a dashboard for the compliance teams.

Question 32

A company's compliance audit reveals that some Amazon Elastic Block Store (Amazon EBS) volumes that were created in an AWS account were not encrypted. A solutions architect must Implement a solution to encrypt all new EBS volumes at rest

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Create an Amazon EventBridge rule to detect the creation of unencrypted EBS volumes. Invoke an AWS Lambda function to delete noncompliant volumes.

B.

Use AWS Audit Manager with data encryption.

C.

Create an AWS Config rule to detect the creation of a new EBS volume. Encrypt the volume by using AWS Systems Manager Automation.

D.

Turn in EBS encryption by default in all AWS Regions.

Question 33

A company manages hundreds of AWS accounts centrally in an organization in AWS Organizations. The company recently started to allow product teams to create and manage their own S3 access points in their accounts. The S3 access points can be accessed only within VPCs not on the internet.

What is the MOST operationally efficient way to enforce this requirement?

Options:

A.

Set the S3 access point resource policy to deny the s3 CreateAccessPoint action unless the s3: AccessPointNetworkOngm condition key evaluates to VPC.

B.

Create an SCP at the root level in the organization to deny the s3 CreateAccessPoint action unless the s3 AccessPomtNetworkOngin condition key evaluates to VPC.

C.

Use AWS CloudFormation StackSets to create a new 1AM policy in each AVVS account that allows the s3: CreateAccessPoint action only if the s3 AccessPointNetworkOrigin condition key evaluates to VPC.

D.

Set the S3 bucket policy to deny the s3: CreateAccessPoint action unless the s3 AccessPointNetworkOrigin condition key evaluates to VPC.

Question 34

A company is planning to migrate its on-premises VMware cluster of 120 VMS to AWS. The VMS have many different operating systems and many custom software

packages installed. The company also has an on-premises NFS server that is 10 TB in size. The company has set up a 10 GbpsAWS Direct Connect connection to AWS for the migration

Which solution will complete the migration to AWS in the LEAST amount of time?

Options:

A.

Export the on-premises VMS and copy them to an Amazon S3 bucket. Use VM Import/Export to create AMIS from the VM images that are stored in Amazon S3. Order an AWS Snowball Edge device. Copy the NFS server data to the device. Restore the NFS server data to an Amazon EC2 instance that has NFS configured.

B.

Configure AWS Application Migration Service with a connection to the VMware cluster. Create a replication job for the VMS. Create an Amazon Elastic File System (Amazon EFS) file system. Configure AWS DataSync to copy the NFS server data to the EFS file system over the Direct Connect connection.

C.

Recreate the VMS on AWS as Amazon EC2 instances. Install all the required software packages. Create an Amazon FSx for Lustre file system. Configure AWS DataSync to copy the NFS server data to the FSx for Lustre file system over the Direct Connect connection.

D.

Order two AWS Snowball Edge devices. Copy the VMS and the NFS server data to the devices. Run VM Import/Export after the data from the devices is loaded to an Amazon S3 bucket. Create an Amazon Elastic File System (Amazon EFS) file system. Copy the NFS server data from Amazon S3 to the EFS file system.

Question 35

A company runs a web application on AWS. The web application delivers static content from an Amazon S3 bucket that is behind an Amazon CloudFront distribution. The application serves dynamic content by using an Application Load Balancer (ALB) that distributes requests to a fleet of Amazon EC2 instances in Auto Scaling groups. The application uses a domain name setup in Amazon Route 53.

Some users reported occasional issues when the users attempted to access the website during peak hours. An operations team found that the ALB sometimes returned HTTP 503 Service Unavailable errors. The company wants to display a custom error message page when these errors occur. The page should be displayed immediately for this error code.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Set up a Route 53 failover routing policy. Configure a health check to determine the status of the ALB endpoint and to fail over to the failover S3 bucket endpoint.

B.

Create a second CloudFront distribution and an S3 static website to host the custom error page. Set up a Route 53 failover routing policy. Use an active-passive configuration between the two distributions.

C.

Create a CloudFront origin group that has two origins. Set the ALB endpoint as the primary origin. For the secondary origin, set an S3 bucket that is configured to host a static website Set up origin failover for the CloudFront distribution. Update the S3 static website to incorporate the custom error page.

D.

Create a CloudFront function that validates each HTTP response code that the ALB returns. Create an S3 static website in an S3 bucket. Upload the custom error page to the S3 bucket as a failover. Update the function to read the S3 bucket and to serve the error page to the end users.

Question 36

A solutions architect works for a government agency that has strict disaster recovery requirements. All Amazon Elastic Block Store (Amazon EBS) snapshots are required to be saved in at least two additional AWS Regions. The agency also is required to maintain the lowest possible operational overhead.

Which solution meets these requirements?

Options:

A.

Configure a policy in Amazon Data Lifecycle Manager (Amazon DLM) to run once daily to copy the EBS snapshots to the additional Regions.

B.

Use Amazon EventBridge (Amazon CloudWatch Events) to schedule an AWS Lambda function to copy the EBS snapshots to the additional Regions.

C.

Set up AWS Backup to create the EBS snapshots. Configure Amazon S3 cross-Region replication to copy the EBS snapshots to the additional Regions.

D.

Schedule Amazon EC2 Image Builder to run once daily to create an AMI and copy the AMI to the additional Regions

Question 37

A solutions architect has implemented a SAML 2 0 federated identity solution with their company's on-premises identity provider (IdP) to authenticate users' access to the AWS environment. When the solutions architect tests authentication through the federated identity web portal, access to the AWS environment is granted However when test users attempt to authenticate through the federated identity web portal, they are not able to access the AWS environment

Which items should the solutions architect check to ensure identity federation is properly configured? (Select THREE)

Options:

A.

The 1AM user's permissions policy has allowed the use of SAML federation for that user

B.

The 1AM roles created for the federated users' or federated groups' trust policy have set the SAML provider as the principal

C.

Test users are not in the AWSFederatedUsers group in the company's IdP

D.

The web portal calls the AWS STS AssumeRoleWithSAML API with the ARN of the SAML provider, the ARN of the 1AM role, and the SAML assertion from IdP

E.

The on-premises IdP's DNS hostname is reachable from the AWS environment VPCs

F.

The company's IdP defines SAML assertions that properly map users or groups in the company to 1AM roles with appropriate permissions

Question 38

A company has Linux-based Amazon EC2 instances. Users must access the instances by using SSH with EC2 SSH Key pairs. Each machine requires a unique EC2 Key pair.

The company wants to implement a key rotation policy that will, upon request, automatically rotate all the EC2 key pairs and keep the key in a securely encrypted place. The company will accept less than 1 minute of downtime during key rotation.

Which solution will meet these requirement?

Options:

A.

Store all the keys in AWS Secrets Manager. Define a Secrets Manager rotation schedule to invoke an AWS Lambda function to generate new key pairs. Replace public Keys on EC2 instances. Update the private keys in Secrets Manager.

B.

Store all the keys in Parameter. Store, a capability of AWS Systems Manager, as a string. Define a Systems Manager maintenance window to invoke an AWS Lambda function to generate new key pairs. Replace public keys on EC2 instance. Update the private keys in parameter.

C.

Import the EC2 key pairs into AWS Key Management Service (AWS KMS). Configure automatic key rotation for these key pairs. Create an Amazon EventlBridge scheduled rule to invoke an AWS Lambda function to initiate the key rotation AWS KMS.

D.

Add all the EC2 instances to Feet Manager, a capability of AWS Systems Manager. Define a Systems Manager maintenance window to issue a Systems Manager Run Command document to generate new Key pairs and to rotate public keys to all the instances in Feet Manager.

Question 39

A company is running multiple workloads in the AWS Cloud. The company has separate units for software development. The company uses AWS Organizations and federation with SAML to give permissions to developers to manage resources in their AWS accounts. The development units each deploy their production workloads into a common production account.

Recently, an incident occurred in the production account in which members of a development unit terminated an EC2 instance that belonged to a different development unit. A solutions architect must create a solution that prevents a similar incident from happening in the future. The solution also must allow developers the possibility to manage the instances used for their workloads.

Which strategy will meet these requirements?

Options:

A.

Create separate OUs in AWS Organizations for each development unit. Assign the created OUs to the company AWS accounts. Create separate SCPs with a deny action and a StringNotEquals condition for the DevelopmentUnit resource tag that matches the development unit name. Assign the SCP to the corresponding OU.

B.

Pass an attribute for DevelopmentUnit as an AWS Security Token Service (AWS STS) session tag during SAML federation. Update the IAM policy for the developers' assumed IAM role with a deny action and a StringNotEquals condition for the DevelopmentUnit resource tag and aws:PrincipalTag/ DevelopmentUnit.

C.

Pass an attribute for DevelopmentUnit as an AWS Security Token Service (AWS STS) session tag during SAML federation. Create an SCP with an allow action and a StringEquals condition for the DevelopmentUnit resource tag and aws:PrincipalTag/DevelopmentUnit. Assign the SCP to the root OU.

D.

Create separate IAM policies for each development unit. For every IAM policy, add an allow action and a StringEquals condition for the DevelopmentUnit resource tag and the development unit name. During SAML federation, use AWS Security Token Service (AWS STS) to assign the IAM policy and match the development unit name to the assumed IAM role.

Question 40

A company is migrating an application to AWS. It wants to use fully managed services as much as possible during the migration The company needs to store large, important documents within the application with the following requirements

1 The data must be highly durable and available

2. The data must always be encrypted at rest and in transit.

3 The encryption key must be managed by the company and rotated periodically

Which of the following solutions should the solutions architect recommend?

Options:

A.

Deploy the storage gateway to AWS in file gateway mode Use Amazon EBS volume encryption using an AWS KMS key to encrypt the storage gateway volumes

B.

Use Amazon S3 with a bucket policy to enforce HTTPS for connections to the bucket and to enforce server-side encryption and AWS KMS for object encryption.

C.

Use Amazon DynamoDB with SSL to connect to DynamoDB Use an AWS KMS key to encrypt DynamoDB objects at rest.

D.

Deploy instances with Amazon EBS volumes attached to store this data Use EBS volume encryption using an AWS KMS key to encrypt the data.

Question 41

A company is designing an AWS environment tor a manufacturing application. The application has been successful with customers, and the application's user base has increased. The company has connected the AWS environment to the company's on-premises data center through a 1 Gbps AWS Direct Connect connection. The company has configured BGP for the connection.

The company must update the existing network connectivity solution to ensure that the solution is highly available, fault tolerant, and secure.

Which solution win meet these requirements MOST cost-effectively?

Options:

A.

Add a dynamic private IP AWS Site-to-Site VPN as a secondary path to secure data in transit and provide resilience for the Direct Conned connection. Configure MACsec to encrypt traffic inside the Direct Connect connection.

B.

Provision another Direct Conned connection between the company's on-premises data center and AWS to increase the transfer speed and provide resilience. Configure MACsec to encrypt traffic inside the Dried Conned connection.

C.

Configure multiple private VIFs. Load balance data across the VIFs between the on-premises data center and AWS to provide resilience.

D.

Add a static AWS Site-to-Site VPN as a secondary path to secure data in transit and to provide resilience for the Direct Connect connection.

Question 42

A company uses AWS Organizations to manage more than 1.000 AWS accounts. The company has created a new developer organization. There are 540 developer member accounts that must be moved to the new developer organization. All accounts are set up with all the required Information so that each account can be operated as a standalone account.

Which combination of steps should a solutions architect take to move all of the developer accounts to the new developer organization? (Select THREE.)

Options:

A.

Call the MoveAccount operation in the Organizations API from the old organization's management account to migrate the developer accounts to the new developer organization.

B.

From the management account, remove each developer account from the old organization using the RemoveAccountFromOrganization operation in the Organizations API.

C.

From each developer account, remove the account from the old organization using the RemoveAccountFromOrganization operation in the Organizations API.

D.

Sign in to the new developer organization's management account and create a placeholder member account that acts as a target for the developer account migration.

E.

Call the InviteAccountToOrganization operation in the Organizations API from the new developer organization's management account to send invitations to the developer accounts.

F.

Have each developer sign in to their account and confirm to join the new developer organization.

Question 43

A company has migrated a legacy application to the AWS Cloud. The application runs on three Amazon EC2 instances that are spread across three Availability Zones. One EC2 instance is in each Availability Zone. The EC2 instances are running in three private subnets of the VPC and are set up as targets for an Application Load Balancer (ALB) that is associated with three public subnets.

The application needs to communicate with on-premises systems. Only traffic from IP addresses in the company's IP address range are allowed to access the on-premises systems. The company's security team is bringing only one IP address from its internal IP address range to the cloud. The company has added this IP address to the allow list for the company firewall. The company also has created an Elastic IP address for this IP address.

A solutions architect needs to create a solution that gives the application the ability to communicate with the on-premises systems. The solution also must be able to mitigate failures automatically.

Which solution will meet these requirements?

Options:

A.

Deploy three NAT gateways, one in each public subnet. Assign the Elastic IP address to the NAT gateways. Turn on health checks for the NAT gateways. If a NAT gateway fails a health check, recreate the NAT gateway and assign the Elastic IP address to the new NAT gateway.

B.

Replace the ALB with a Network Load Balancer (NLB). Assign the Elastic IP address to the NLB Turn on health checks for the NLB. In the case of a failed health check, redeploy the NLB in different subnets.

C.

Deploy a single NAT gateway in a public subnet. Assign the Elastic IP address to the NAT gateway. Use Amazon CloudWatch with a custom metric to

monitor the NAT gateway. If the NAT gateway is unhealthy, invoke an AWS Lambda function to create a new NAT gateway in a different subnet. Assign the Elastic IP address to the new NAT gateway.

D.

Assign the Elastic IP address to the ALB. Create an Amazon Route 53 simple record with the Elastic IP address as the value. Create a Route 53 health check. In the case of a failed health check, recreate the ALB in different subnets.

Question 44

An external audit of a company's serverless application reveals IAM policies that grant too many permissions. These policies are attached to the company's AWS Lambda execution roles. Hundreds of the company's Lambda functions have broad access permissions, such as full access to Amazon S3 buckets and Amazon DynamoDB tables. The company wants each function to have only the minimum permissions that the function needs to complete its task.

A solutions architect must determine which permissions each Lambda function needs.

What should the solutions architect do to meet this requirement with the LEAST amount of effort?

Options:

A.

Set up Amazon CodeGuru to profile the Lambda functions and search for AWS API calls. Create an inventory of the required API calls and resources for each Lambda function. Create new IAM access policies for each Lambda function. Review the new policies to ensure that they meet the company's business requirements.

B.

Turn on AWS CloudTrail logging for the AWS account. Use AWS Identity and Access Management Access Analyzer to generate IAM access policies based on the activity recorded in the CloudTrail log. Review the generated policies to ensure that they meet the company's business requirements.

C.

Turn on AWS CloudTrail logging for the AWS account. Create a script to parse the CloudTrail log, search for AWS API calls by Lambda execution role, and create a summary report. Review the report. Create IAM access policies that provide more restrictive permissions for each Lambda function.

D.

Turn on AWS CloudTrail logging for the AWS account. Export the CloudTrail logs to Amazon S3. Use Amazon EMR to process the CloudTrail logs in Amazon S3 and produce a report of API calls and resources used by each execution role. Create a new IAM access policy for each role. Export the generated roles to an S3 bucket. Review the generated policies to ensure that they meet the company's business requirements.

Question 45

A solutions architect wants to cost-optimize and appropriately size Amazon EC2 instances in a single AWS account. The solutions architect wants to ensure that the instances are optimized based on CPU, memory, and network metrics.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

Options:

A.

Purchase AWS Business Support or AWS Enterprise Support for the account.

B.

Turn on AWS Trusted Advisor and review any “Low Utilization Amazon EC2 Instances” recommendations.

C.

Install the Amazon CloudWatch agent and configure memory metric collection on the EC2 instances.

D.

Configure AWS Compute Optimizer in the AWS account to receive findings and optimization recommendations.

E.

Create an EC2 Instance Savings Plan for the AWS Regions, instance families, and operating systems of interest.

Question 46

A company needs to optimize the cost of backups for Amazon Elastic File System (Amazon EFS). A solutions architect has already configured a backup plan in AWS Backup for the EFS backups. The backup plan contains a rule with a lifecycle configuration to transition EFS backups to cold storage after 7 days and to keep the backups for an additional 90 days.

After I month, the company reviews its EFS storage costs and notices an increase in the EFS backup costs. The EFS backup cold storage produces almost double the cost of the EFS warm backup storage.

What should the solutions architect do to optimize the cost?

Options:

A.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 1 day. Set the backup retention period to 30 days.

B.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 8 days. Set the backup retention period to 30 days.

C.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 1 day. Set the backup retention period to 90 days.

D.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 8 days. Set the backup retention period to 98 days.

Question 47

A company operates an on-premises software-as-a-service (SaaS) solution that ingests several files daily. The company provides multiple public SFTP endpoints to its customers to facilitate the file transfers. The customers add the SFTP endpoint IP addresses to their firewall allow list for outbound traffic. Changes to the SFTP endmost IP addresses are not permitted.

The company wants to migrate the SaaS solution to AWS and decrease the operational overhead of the file transfer service.

Which solution meets these requirements?

Options:

A.

Register the customer-owned block of IP addresses in the company's AWS account. Create Elastic IP addresses from the address pool and assign them to an AWS Transfer for SFTP endpoint. Use AWS Transfer to store the files in Amazon S3.

B.

Add a subnet containing the customer-owned block of IP addresses to a VPC Create Elastic IP addresses from the address pool and assign them to an Application Load Balancer (ALB). Launch EC2 instances hosting FTP services in an Auto Scaling group behind the ALB. Store the files in attached Amazon Elastic Block Store (Amazon EBS) volumes.

C.

Register the customer-owned block of IP addresses with Amazon Route 53. Create alias records in Route 53 that point to a Network Load Balancer (NLB). Launch EC2 instances hosting FTP services in an Auto Scaling group behind the NLB. Store the files in Amazon S3.

D.

Register the customer-owned block of IP addresses in the company's AWS account. Create Elastic IP addresses from the address pool and assign them to an Amazon S3 VPC endpoint. Enable SFTP support on the S3 bucket.

Question 48

A company has set up its entire infrastructure on AWS. The company uses Amazon EC2 instances to host its ecommerce website and uses Amazon S3 to store static data. Three engineers at the company handle the cloud administration and development through one AWS account. Occasionally, an engineer alters an EC2 security group configuration of another engineer and causes noncompliance issues in the environment.

A solutions architect must set up a system that tracks changes that the engineers make. The system must send alerts when the engineers make noncompliant changes to the security settings for the EC2 instances.

What is the FASTEST way for the solutions architect to meet these requirements?

Options:

A.

Set up AWS Organizations for the company. Apply SCPs to govern and track noncompliant security group changes that are made to the AWS account.

B.

Enable AWS CloudTrail to capture the changes to EC2 security groups. Enable Amazon CtoudWatch rules to provide alerts when noncompliant security settings are detected.

C.

Enable SCPs on the AWS account to provide alerts when noncompliant security group changes are made to the environment.

D.

Enable AWS Config on the EC2 security groups to track any noncompliant changes Send the changes as alerts through an Amazon Simple Notification Service (Amazon SNS) topic.

Question 49

A company plans to migrate a three-tiered web application from an on-premises data center to AWS The company developed the Ui by using server-side JavaScript libraries The business logic and API tier uses a Python-based web framework The data tier runs on a MySQL database

The company custom built the application to meet business requirements The company does not want to re-architect the application The company needs a solution to replatform the application to AWS with the least possible amount of development The solution needs to be highly available and must reduce operational overhead

Which solution will meet these requirements?

Options:

A.

Deploy the UI to a static website on Amazon S3 Use Amazon CloudFront to deliver the website Build the business logic in a Docker image Store the image in Amazon

Elastic Container Registry (Amazon ECR) Use Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type to host the website with an Application Load Balancer in front Deploy the data layer to an Amazon Aurora MySQL DB cluster

B.

Build the UI and business logic in Docker images Store the images in Amazon Elastic Container Registry (Amazon ECR) Use Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type to host the UI and business logic applications with an Application Load Balancer in front Migrate the database to an Amazon RDS for MySQL Multi-AZ DB instance

C.

Deploy the UI to a static website on Amazon S3 Use Amazon CloudFront to deliver the website Convert the business logic to AWS Lambda functions Integrate the functions with Amazon API Gateway Deploy the data layer to an Amazon Aurora MySQL DB cluster

D.

Build the UI and business logic in Docker images Store the images in Amazon Elastic Container Registry (Amazon ECR) Use Amazon Elastic Kubernetes Service

(Amazon EKS) with Fargate profiles to host the UI and business logic Use AWS Database Migration Service (AWS DMS) to migrate the data layer to Amazon DynamoDB

Question 50

A solutions architect is planning to migrate critical Microsoft SOL Server databases to AWS. Because the databases are legacy systems, the solutions architect will move the databases to a modern data architecture. The solutions architect must migrate the databases with near-zero downtime.

Which solution will meet these requirements?

Options:

A.

Use AWS Application Migration Service and the AWS Schema Conversion Tool (AWS SCT). Perform an In-place upgrade before the migration. Export the migrated data to Amazon Aurora Serverless after cutover. Repoint the applications to Amazon Aurora.

B.

Use AWS Database Migration Service (AWS DMS) to Rehost the database. Set Amazon S3 as a target. Set up change data capture (CDC) replication. When the source and destination are fully synchronized, load the data from Amazon S3 into an Amazon RDS for Microsoft SQL Server DB Instance.

C.

Use native database high availability tools Connect the source system to an Amazon RDS for Microsoft SQL Server DB instance Configure replication accordingly. When data replication is finished, transition the workload to an Amazon RDS for Microsoft SQL Server DB instance.

D.

Use AWS Application Migration Service. Rehost the database server on Amazon EC2. When data replication is finished, detach the database and move the database to an Amazon RDS for Microsoft SQL Server DB instance. Reattach the database and then cut over all networking.

Question 51

A company is migrating a document processing workload to AWS. The company has updated many applications to natively use the Amazon S3 API to store, retrieve, and modify documents that a processing server generates at a rate of approximately 5 documents every second. After the document processing is finished, customers can download the documents directly from Amazon S3.

During the migration, the company discovered that it could not immediately update the processing server that generates many documents to support the S3 API. The server runs on Linux and requires fast local access to the files that the server generates and modifies. When the server finishes processing, the files must be available to the public for download within 30 minutes.

Which solution will meet these requirements with the LEAST amount of effort?

Options:

A.

Migrate the application to an AWS Lambda function. Use the AWS SDK for Java to generate, modify, and access the files that the company stores directly in Amazon S3.

B.

Set up an Amazon S3 File Gateway and configure a file share that is linked to the document store. Mount the file share on an Amazon EC2 instance by using NFS. When changes occur in Amazon S3, initiate a RefreshCache API call to update the S3 File Gateway.

C.

Configure Amazon FSx for Lustre with an import and export policy. Link the new file system to an S3 bucket. Install the Lustre client and mount the document store to an Amazon EC2 instance by using NFS.

D.

Configure AWS DataSync to connect to an Amazon EC2 instance. Configure a task to synchronize the generated files to and from Amazon S3.

Question 52

A company runs an intranet application on premises. The company wants to configure a cloud backup of the application. The company has selected AWS Elastic Disaster Recovery for this solution.

The company requires that replication traffic does not travel through the public internet. The application also must not be accessible from the internet. The company does not want this solution to consume all available network bandwidth because other applications require bandwidth.

Which combination of steps will meet these requirements? (Select THREE.)

Options:

A.

Create a VPC that has at least two private subnets, two NAT gateways, and a virtual private gateway.

B.

Create a VPC that has at least two public subnets, a virtual private gateway, and an internet gateway.

C.

Create an AWS Site-to-Site VPN connection between the on-premises network and the target AWS network.

D.

Create an AWS Direct Connect connection and a Direct Connect gateway between the on-premises network and the target AWS network.

E.

During configuration of the replication servers, select the option to use private IP addresses for data replication.

F.

During configuration of the launch settings for the target servers, select the option to ensure that the Recovery instance's private IP address matches the source server's private IP address.

Question 53

A company is running an application in the AWS Cloud. The core business logic is running on a set of Amazon EC2 instances in an Auto Scaling group. An Application Load Balancer (ALB) distributes traffic to the EC2 instances. Amazon Route 53 record api.example.com is pointing to the ALB.

The company's development team makes major updates to the business logic. The company has a rule that when changes are deployed, only 10% of customers can receive the new logic during a testing window. A customer must use the same version of the business logic during the testing window.

How should the company deploy the updates to meet these requirements?

Options:

A.

Create a second ALB, and deploy the new logic to a set of EC2 instances in a new Auto Scaling group. Configure the ALB to distribute traffic to the EC2 instances. Update the Route 53 record to use weighted routing, and point the record to both of the ALBs.

B.

Create a second target group that is referenced by the ALB. Deploy the new logic to EC2 instances in this new target group. Update the ALB listener rule to use weighted target groups. Configure ALB target group stickiness.

C.

Create a new launch configuration for the Auto Scaling group. Specify the launch configuration to use the AutoScaIingRoIIingUpdate policy, and set the MaxBatchSize option to 10. Replace the launch configuration on the Auto Scaling group. Deploy the changes.

D.

Create a second Auto Scaling group that is referenced by the ALB. Deploy the new logic on a set of EC2 instances in this new Auto Scaling group. Change the ALB routing algorithm to least outstanding requests (LOR). Configure ALB session stickiness.

Question 54

A large company runs workloads in VPCs that are deployed across hundreds of AWS accounts. Each VPC consists to public subnets and private subnets that span across multiple Availability Zones. NAT gateways are deployed in the public subnets and allow outbound connectivity to the internet from the private subnets.

A solutions architect is working on a hub-and-spoke design. All private subnets in the spoke VPCs must route traffic to the internet through an egress VPC. The solutions architect already has deployed a NAT gateway in an egress VPC in a central AWS account.

Which set of additional steps should the solutions architect take to meet these requirements?

Options:

A.

Create peering connections between the egress VPC and the spoke VPCs. Configure the required routing to allow access to the internet.

B.

Create a transit gateway, and share it with the existing AWS accounts. Attach existing VPCs to the transit gateway Configure the required routing to allow access to the internet.

C.

Create a transit gateway in every account. Attach the NAT gateway to the transit gateways. Configure the required routing to allow access to the internet.

D.

Create an AWS PrivateLink connection between the egress VPC and the spoke VPCs. Configure the required routing to allow access to the internet

Question 55

A company ingests and processes streaming market data. The data rate is constant. A nightly process that calculates aggregate statistics is run, and each execution takes about 4 hours to complete. The statistical analysis is not mission critical to the business, and previous data points are picked up on the next execution if a particular run fails.

The current architecture uses a pool of Amazon EC2 Reserved Instances with 1-year reservations running full time to ingest and store the streaming data in attached Amazon EBS volumes. On-Demand EC2 instances are launched each night to perform the nightly processing, accessing the stored data from NFS shares on the ingestion servers, and terminating the nightly processing servers when complete. The Reserved Instance reservations are expiring, and the company needs to determine whether to purchase new reservations or implement a new design.

Which is the most cost-effective design?

Options:

A.

Update the ingestion process to use Amazon Kinesis Data Firehose to save data to Amazon S3. Use a scheduled script to launch a fleet of EC2 On-Demand Instances each night to perform the batch processing of the S3 data. Configure the script to terminate the instances when the processing is complete.

B.

Update the ingestion process to use Amazon Kinesis Data Firehose to save data to Amazon S3. Use AWS Batch with Spot Instances to perform nightly

processing with a maximum Spot price that is 50% of the On-Demand price.

C.

Update the ingestion process to use a fleet of EC2 Reserved Instances with 3-year reservations behind a Network Load Balancer. Use AWS Batch with Spot

Instances to perform nightly processing with a maximum Spot price that is 50% of the On-Demand price.

D.

Update the ingestion process to use Amazon Kinesis Data Firehose to save data to Amazon Redshift. Use Amazon EventBridge to schedule an AWS Lambda

function to run nightly to query Amazon Redshift to generate the daily statistics.

Question 56

A company is updating an application that customers use to make online orders. The number of attacks on the application by bad actors has increased recently.

The company will host the updated application on an Amazon Elastic Container Service (Amazon ECS) cluster. The company will use Amazon DynamoDB to store application data. A public Application Load Balancer (ALB) will provide end users with access to the application. The company must prevent prevent attacks and ensure business continuity with minimal service interruptions during an ongoing attack.

Which combination of steps will meet these requirements MOST cost-effectively? (Select TWO.)

Options:

A.

Create an Amazon CloudFront distribution with the ALB as the origin. Add a custom header and random value on the CloudFront domain. Configure the ALB to conditionally forward traffic if the header and value match.

B.

Deploy the application in two AWS Regions. Configure Amazon Route 53 to route to both Regions with equal weight.

C.

Configure auto scaling for Amazon ECS tasks. Create a DynamoDB Accelerator (DAX) cluster.

D.

Configure Amazon ElastiCache to reduce overhead on DynamoDB.

E.

Deploy an AWS WAF web ACL that includes an appropriate rule group. Associate the web ACL with the Amazon CloudFront distribution.

Question 57

A manufacturing company is building an inspection solution for its factory. The company has IP cameras at the end of each assembly line. The company has used Amazon SageMaker to train a machine learning (ML) model to identify common defects from still images.

The company wants to provide local feedback to factory workers when a defect is detected. The company must be able to provide this feedback even if the factory’s internet connectivity is down. The company has a local Linux server that hosts an API that provides local feedback to the workers.

How should the company deploy the ML model to meet these requirements?

Options:

A.

Set up an Amazon Kinesis video stream from each IP camera to AWS. Use Amazon EC2 instances to take still images of the streams. Upload the images to an Amazon S3 bucket. Deploy a SageMaker endpoint with the ML model. Invoke an AWS Lambda function to call the inference endpoint when new images are uploaded. Configure the Lambda function to call the local API when a defect is detected.

B.

Deploy AWS IoT Greengrass on the local server. Deploy the ML model to the Greengrass server. Create a Greengrass component to take still images from the cameras and run inference. Configure the component to call the local API when a defect is detected.

C.

Order an AWS Snowball device. Deploy a SageMaker endpoint the ML model and an Amazon EC2 instance on the Snowball device. Take still images from the cameras. Run inference from the EC2 instance. Configure the instance to call the local API when a defect is detected.

D.

Deploy Amazon Monitron devices on each IP camera. Deploy an Amazon Monitron Gateway on premises. Deploy the ML model to the Amazon Monitron devices. Use Amazon Monitron health state alarms to call the local API from an AWS Lambda function when a defect is detected.

Question 58

A company wants to use AWS for disaster recovery for an on-premises application. The company has hundreds of Windows-based servers that run the application. All the servers mount a common share.

The company has an RTO of 15 minutes and an RPO of 5 minutes. The solution must support native failover and fallback capabilities.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create an AWS Storage Gateway File Gateway. Schedule daily Windows server backups. Save the data lo Amazon S3. During a disaster, recover the on-premises servers from the backup. During failback. run the on-premises servers on Amazon EC2 instances.

B.

Create a set of AWS CloudFormation templates to create infrastructure. Replicate all data to Amazon Elastic File System (Amazon EFS) by using AWS DataSync. During a disaster, use AWS CodePipeline to deploy the templates to restore the on-premises servers. Fail back the data by using DataSync.

C.

Create an AWS Cloud Development Kit (AWS CDK) pipeline to stand up a multi-site active-active environment on AWS. Replicate data into Amazon S3 by using the s3 sync command. During a disaster, swap DNS endpoints to point to AWS. Fail back the data by using the s3 sync command.

D.

Use AWS Elastic Disaster Recovery to replicate the on-premises servers. Replicate data to an Amazon FSx for Windows File Server file system by using AWS DataSync. Mount the file system to AWS servers. During a disaster, fail over the on-premises servers to AWS. Fail back to new or existing servers by using Elastic Disaster Recovery.

Question 59

A company runs an application in an on-premises data center. The application gives users the ability to upload media files. The files persist in a file server. The web application has many users. The application server is overutilized, which causes data uploads to fail occasionally. The company frequently adds new storage to the file server. The company wants to resolve these challenges by migrating the application to AWS.

Users from across the United States and Canada access the application. Only authenticated users should have the ability to access the application to upload files. The company will consider a solution that refactors the application, and the company needs to accelerate application development.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use AWS Application Migration Service to migrate the application server to Amazon EC2 instances. Create an Auto Scaling group for the EC2 instances. Use an Application Load Balancer to distribute the requests. Modify the application to use Amazon S3 to persist the files. Use Amazon Cognito to authenticate users.

B.

Use AWS Application Migration Service to migrate the application server to Amazon EC2 instances. Create an Auto Scaling group for the EC2 instances. Use an Application Load Balancer to distribute the requests. Set up AWS IAM Identity Center (AWS Single Sign-On) to give users the ability to sign in to the application. Modify the application to use Amazon S3 to persist the files.

C.

Create a static website for uploads of media files. Store the static assets in Amazon S3. Use AWS AppSync to create an API. Use AWS Lambda resolvers to upload the media files to Amazon S3. Use Amazon Cognito to authenticate users.

D.

Use AWS Amplify to create a static website for uploads of media files. Use Amplify Hosting to serve the website through Amazon CloudFront. Use Amazon S3 to store the uploaded media files. Use Amazon Cognito to authenticate users.

Question 60

A company wants to containerize a multi-tier web application and move the application from an on-premises data center to AWS. The application includes web. application, and database tiers. The company needs to make the application fault tolerant and scalable. Some frequently accessed data must always be available across application servers. Frontend web servers need session persistence and must scale to meet increases in traffic.

Which solution will meet these requirements with the LEAST ongoing operational overhead?

Options:

A.

Run the application on Amazon Elastic Container Service (Amazon ECS) on AWS Fargate. Use Amazon Elastic File System (Amazon EFS) for data that is frequently accessed between the web and application tiers. Store the frontend web server session data in Amazon Simple Queue Service (Amazon SOS).

B.

Run the application on Amazon Elastic Container Service (Amazon ECS) on Amazon EC2. Use Amazon ElastiCache for Redis to cache frontend web server session data. Use Amazon Elastic Block Store (Amazon EBS) with Multi-Attach on EC2 instances that are distributed across multiple Availability Zones.

C.

Run the application on Amazon Elastic Kubernetes Service (Amazon EKS). Configure Amazon EKS to use managed node groups. Use ReplicaSets to run the web servers and applications. Create an Amazon Elastic File System (Amazon EFS) Me system. Mount the EFS file system across all EKS pods to store frontend web server session data.

D.

Deploy the application on Amazon Elastic Kubernetes Service (Amazon EKS) Configure Amazon EKS to use managed node groups. Run the web servers and application as Kubernetes deployments in the EKS cluster. Store the frontend web server session data in an Amazon DynamoDB table. Create an Amazon Elastic File System (Amazon EFS) volume that all applications will mount at the time of deployment.

Question 61

A company needs to architect a hybrid DNS solution. This solution will use an Amazon Route 53 private hosted zone for the domain cloud.example.com for the resources stored within VPCs.

The company has the following DNS resolution requirements:

• On-premises systems should be able to resolve and connect to cloud.example.com.

• All VPCs should be able to resolve cloud.example.com.

There is already an AWS Direct Connect connection between the on-premises corporate network and AWS Transit Gateway. Which architecture should the company use to meet these requirements with the HIGHEST performance?

Options:

A.

Associate the private hosted zone to all the VPCs. Create a Route 53 inbound resolver in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the inbound resolver.

B.

Associate the private hosted zone to all the VPCs. Deploy an Amazon EC2 conditional forwarder in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the conditional forwarder.

C.

Associate the private hosted zone to the shared services VPC. Create a Route 53 outbound resolver in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the outbound resolver.

D.

Associate the private hosted zone to the shared services VPC. Create a Route 53 inbound resolver in the shared services VPC. Attach the shared services VPC to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the inbound resolver.

Question 62

A company uses AWS Organizations with a single OU named Production to manage multiple accounts All accounts are members of the Production OU Administrators use deny list SCPs in the root of the organization to manage access to restricted services.

The company recently acquired a new business unit and invited the new unit's existing AWS account to the organization Once onboarded the administrators of the new business unit discovered that they are not able to update existing AWS Config rules to meet the company's policies.

Which option will allow administrators to make changes and continue to enforce the current policies without introducing additional long-term maintenance?

Options:

A.

Remove the organization's root SCPs that limit access to AWS Config Create AWS Service Catalog products for the company's standard AWS Config rules and deploy them throughout the organization, including the new account.

B.

Create a temporary OU named Onboarding for the new account Apply an SCP to the Onboarding OU to allow AWS Config actions Move the new account to the Production OU when adjustments to AWS Config are complete

C.

Convert the organization's root SCPs from deny list SCPs to allow list SCPs to allow the required services only Temporarily apply an SCP to the organization's root that allows AWS Config actions for principals only in the new account.

D.

Create a temporary OU named Onboarding for the new account Apply an SCP to the Onboarding OU to allow AWS Config actions. Move the organization's root SCP to the Production OU. Move the new account to the Production OU when adjustments to AWS Config are complete.

Question 63

A company is providing weather data over a REST-based API to several customers. The API is hosted by Amazon API Gateway and is integrated with different AWS Lambda functions for each API operation. The company uses Amazon Route 53 for DNS and has created a resource record of weather.example.com. The company stores data for the API in Amazon DynamoDB tables. The company needs a solution that will give the API the ability to fail over to a different AWS Region.

Which solution will meet these requirements?

Options:

A.

Deploy a new set of Lambda functions in a new Region. Update the API Gateway API to use an edge-optimized API endpoint with Lambda functions from both Regions as targets. Convert the DynamoDB tables to global tables.

B.

Deploy a new API Gateway API and Lambda functions in another Region. Change the Route 53 DNS record to a multivalue answer. Add both API Gateway APIs to the answer. Enable target health monitoring. Convert the DynamoDB tables to global tables.

C.

Deploy a new API Gateway API and Lambda functions in another Region. Change the Route 53 DNS record to a failover record. Enable target health monitoring. Convert the DynamoDB tables to global tables.

D.

Deploy a new API Gateway API in a new Region. Change the Lambda functions to global functions. Change the Route 53 DNS record to a multivalue answer. Add both API Gateway APIs to the answer. Enable target health monitoring. Convert the DynamoDB tables to global tables.

Question 64

A company is deploying a new web-based application and needs a storage solution for the Linux application servers. The company wants to create a single location for updates to application data for all instances. The active dataset will be up to 100 GB in size. A solutions architect has determined that peak operations will occur for 3 hours daily and will require a total of 225 MiBps of read throughput.

The solutions architect must design a Multi-AZ solution that makes a copy of the data available in another AWS Region for disaster recovery (DR). The DR copy has an RPO of less than 1 hour.

Which solution will meet these requirements?

Options:

A.

Deploy a new Amazon Elastic File System (Amazon EFS) Multi-AZ file system. Configure the file system for 75 MiBps of provisioned throughput. Implement

replication to a file system in the DR Region.

B.

Deploy a new Amazon FSx for Lustre file system. Configure Bursting Throughput mode for the file system. Use AWS Backup to back up the file system to the DR Region.

C.

Deploy a General Purpose SSD (gp3) Amazon Elastic Block Store (Amazon EBS) volume with 225 MiBps of throughput. Enable Multi-Attach for the EBS

volume. Use AWS Elastic Disaster Recovery to replicate the EBS volume to the DR Region.

D.

Deploy an Amazon FSx for OpenZFS file system in both the production Region and the DR Region. Create an AWS DataSync scheduled task to replicate the

data from the production file system to the DR file system every 10 minutes.

Question 65

A company is running an application that uses an Amazon ElastiCache for Redis cluster as a caching layer A recent security audit revealed that the company has configured encryption at rest for ElastiCache However the company did not configure ElastiCache to use encryption in transit Additionally, users can access the cache without authentication

A solutions architect must make changes to require user authentication and to ensure that the company is using end-to-end encryption

Which solution will meet these requirements?

Options:

A.

Create an AUTH token Store the token in AWS System Manager Parameter Store, as an encrypted parameter Create a new cluster with AUTH and configure encryption in transit Update the application to retrieve the AUTH token from Parameter Store when necessary and to use the AUTH token for authentication

B.

Create an AUTH token Store the token in AWS Secrets Manager Configure the existing cluster to use the AUTH token and configure encryption in transit Update the application to retrieve the AUTH token from Secrets Manager when necessary and to use the AUTH token for authentication.

C.

Create an SSL certificate Store the certificate in AWS Secrets Manager Create a new cluster and configure encryption in transit Update the application to retrieve the SSL certificate from Secrets Manager when necessary and to use the certificate for authentication.

D.

Create an SSL certificate Store the certificate in AWS Systems Manager Parameter Store, as an encrypted advanced parameter Update the existing cluster to configure encryption in transit Update the application to retrieve the SSL certificate from Parameter Store when necessary and to use the certificate for authentication

Question 66

A solutions architect needs to review the design of an Amazon EMR cluster that is using the EMR File System (EMRFS). The cluster performs tasks that are critical to business needs. The cluster is running Amazon EC2 On-Demand Instances at all times tor all task, primary, and core nodes. The EMR tasks run each morning, starting at 1 ;00 AM. and take 6 hours to finish running. The amount of time to complete the processing is not a priority because the data is not referenced until late in the day.

The solutions architect must review the architecture and suggest a solution to minimize the compute costs.

Which solution should the solutions architect recommend to meet these requirements?

Options:

A.

Launch all task, primary, and core nodes on Spool Instances in an instance fleet. Terminate the cluster, including all instances, when the processing is completed.

B.

Launch the primary and core nodes on On-Demand Instances. Launch the task nodes on Spot Instances in an instance fleet. Terminate the cluster, including all instances, when the processing is completed. Purchase Compute Savings Plans to cover the On-Demand Instance usage.

C.

Continue to launch all nodes on On-Demand Instances. Terminate the cluster, including all instances, when the processing is completed. Purchase Compute Savings Plans to cover the On-Demand Instance usage

D.

Launch the primary and core nodes on On-Demand Instances. Launch the task nodes on Spot Instances in an instance fleet. Terminate only the task node instances when the processing is completed. Purchase Compute Savings Plans to cover the On-Demand Instance usage.

Question 67

A company has multiple business units that each have separate accounts on AWS. Each business unit manages its own network with several VPCs that have CIDR ranges that overlap. The company’s marketing team has created a new internal application and wants to make the application accessible to all the other business units. The solution must use private IP addresses only.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Instruct each business unit to add a unique secondary CIDR range to the business unit's VPC. Peer the VPCs and use a private NAT gateway in the secondary range to route traffic to the marketing team.

B.

Create an Amazon EC2 instance to serve as a virtual appliance in the marketing account's VPC. Create an AWS Site-to-Site VPN connection between the marketing team and each business unit's VPC. Perform NAT where necessary.

C.

Create an AWS PrivateLink endpoint service to share the marketing application. Grant permission to specific AWS accounts to connect to the service. Create interface VPC endpoints in other accounts to access the application by using private IP addresses.

D.

Create a Network Load Balancer (NLB) in front of the marketing application in a private subnet. Create an API Gateway API. Use the Amazon API Gateway private integration to connect the API to the NLB. Activate IAM authorization for the API. Grant access to the accounts of the other business units.

Question 68

A company wants to refactor its retail ordering web application that currently has a load-balanced Amazon EC2 instance fleet for web hosting, database API services, and business logic. The company needs to create a decoupled, scalable architecture with a mechanism for retaining failed orders while also minimizing operational costs.

Which solution will meet these requirements?

Options:

A.

Use Amazon S3 for web hosting with Amazon API Gateway for database API services. Use Amazon Simple Queue Service (Amazon SQS) for order queuing. Use Amazon Elastic Container Service (Amazon ECS) for business logic with Amazon SQS long polling for retaining failed orders.

B.

Use AWS Elastic Beanstalk for web hosting with Amazon API Gateway for database API services. Use Amazon MQ for order queuing. Use AWS Step Functions

for business logic with Amazon S3 Glacier Deep Archive for retaining failed orders.

C.

Use Amazon S3 for web hosting with AWS AppSync for database API services. Use Amazon Simple Queue Service (Amazon SQS) for order queuing. Use AWS Lambda for business logic with an Amazon SQS dead-letter queue for retaining failed orders.

D.

Use Amazon Lightsail for web hosting with AWS AppSync for database API services. Use Amazon Simple Email Service (Amazon SES) for order queuing. Use

Amazon Elastic Kubernetes Service (Amazon EKS) for business logic with Amazon OpenSearch Service for retaining failed orders.

Question 69

A company needs to audit the security posture of a newly acquired AWS account. The company’s data security team requires a notification only when an Amazon S3 bucket becomes publicly exposed. The company has already established an Amazon Simple Notification Service (Amazon SNS) topic that has the data security team's email address subscribed.

Which solution will meet these requirements?

Options:

A.

Create an S3 event notification on all S3 buckets for the isPublic event. Select the SNS topic as the target for the event notifications.

B.

Create an analyzer in AWS Identity and Access Management Access Analyzer. Create an Amazon EventBridge rule for the event type “Access Analyzer Finding” with a filter for “isPublic: true.” Select the SNS topic as the EventBridge rule target.

C.

Create an Amazon EventBridge rule for the event type “Bucket-Level API Call via CloudTrail” with a filter for “PutBucketPolicy.” Select the SNS topic as the EventBridge rule target.

D.

Activate AWS Config and add the cloudtrail-s3-dataevents-enabled rule. Create an Amazon EventBridge rule for the event type “Config Rules Re-evaluation Status” with a filter for “NON_COMPLIANT.” Select the SNS topic as the EventBridge rule target.

Question 70

A solutions architect is reviewing a company's process for taking snapshots of Amazon RDS DB instances. The company takes automatic snapshots every day and retains the snapshots for 7 days.

The solutions architect needs to recommend a solution that takes snapshots every 6 hours and retains the snapshots for 30 days. The company uses AWS Organizations to manage all of its AWS accounts. The company needs a consolidated view of the health of the RDS snapshots.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Turn on the cross-account management feature in AWS Backup. Create a backup plan that specifies the frequency and retention requirements. Add a tag to the DB instances. Apply the backup plan by using tags. Use AWS Backup to monitor the status of the backups.

B.

Turn on the cross-account management feature in Amazon RDS. Create a snapshot global policy that specifies the frequency and retention requirements. Use the RDS console in the management account to monitor the status of the backups.

C.

Turn on the cross-account management feature in AWS CloudFormation. From the management account, deploy a CloudFormation stack set that contains a backup plan from AWS Backup that specifies the frequency and retention requirements. Create an AWS Lambda function in the management account to

monitor the status of the backups. Create an Amazon EventBridge rule in each account to run the Lambda function on a schedule.

D.

Configure AWS Backup in each account. Create an Amazon Data Lifecycle Manager lifecycle policy that specifies the frequency and retention requirements. Specify the DB instances as the target resource. Use the Amazon Data Lifecycle Manager console in each member account to monitor the status of the backups.

Question 71

A company is designing a new website that hosts static content. The website will give users the ability to upload and download large files. According to company requirements, all data must be encrypted in transit and at rest. A solutions architect is building the solution by using Amazon S3 and Amazon CloudFront.

Which combination of steps will meet the encryption requirements? (Select THREE.)

Options:

A.

Turn on S3 server-side encryption for the S3 bucket that the web application uses.

B.

Add a policy attribute of "aws:SecureTransport": "true" for read and write operations in the S3 ACLs.

C.

Create a bucket policy that denies any unencrypted operations in the S3 bucket that the web application uses.

D.

Configure encryption at rest on CloudFront by using server-side encryption with AWS KMS keys (SSE-KMS).

E.

Configure redirection of HTTP requests to HTTPS requests in CloudFront.

F.

Use the RequireSSL option in the creation of presigned URLs for the S3 bucket that the web application uses.

Question 72

A company uses AWS Organizations for a multi-account setup in the AWS Cloud. The company's finance team has a data processing application that uses AWS Lambda and Amazon DynamoDB. The company's marketing team wants to access the data that is stored in the DynamoDB table.

The DynamoDB table contains confidential data. The marketing team can have access to only specific attributes of data in the DynamoDB table. The fi-nance team and the marketing team have separate AWS accounts.

What should a solutions architect do to provide the marketing team with the appropriate access to the DynamoDB table?

Options:

A.

Create an SCP to grant the marketing team's AWS account access to the specific attributes of the DynamoDB table. Attach the SCP to the OU of the finance team.

B.

Create an IAM role in the finance team's account by using IAM policy conditions for specific DynamoDB attributes (fine-grained access con-trol). Establish trust with the marketing team's account. In the mar-keting team's account, create an IAM role that has permissions to as-sume the IAM role in the finance team's account.

C.

Create a resource-based IAM policy that includes conditions for spe-cific DynamoDB attributes (fine-grained access control). Attach the policy to the DynamoDB table. In the marketing team's account, create an IAM role that has permissions to access the DynamoDB table in the finance team's account.

D.

Create an IAM role in the finance team's account to access the Dyna-moDB table. Use an IAM permissions boundary to limit the access to the specific attributes. In the marketing team's account, create an IAM role that has permissions to assume the IAM role in the finance team's account.

Question 73

A company has a data lake in Amazon S3 that needs to be accessed by hundreds of applications across many AWS accounts. The company's information security policy states that the S3 bucket must not be accessed over the public internet and that each application should have the minimum permissions necessary to function.

To meet these requirements, a solutions architect plans to use an S3 access point that is restricted to specific VPCs for each application.

Which combination of steps should the solutions architect take to implement this solution? (Select TWO.)

Options:

A.

Create an S3 access point for each application in the AWS account that owns the S3 bucket. Configure each access point to be accessible only from the application's VPC. Update the bucket policy to require access from an access point.

B.

Create an interface endpoint for Amazon S3 in each application's VPC. Configure the endpoint policy to allow access to an S3 access point. Create a VPC gateway attachment for the S3 endpoint.

C.

Create a gateway endpoint for Amazon S3 in each application's VPC. Configure the endpoint policy to allow access to an S3 access point. Specify the route table that is used to access the access point.

D.

Create an S3 access point for each application in each AWS account and attach the access points to the S3 bucket. Configure each access point to be accessible only from the application's VPC. Update the bucket policy to require access from an access point.

E.

Create a gateway endpoint for Amazon S3 in the data lake's VPC. Attach an endpoint policy to allow access to the S3 bucket. Specify the route table that is used to access the bucket.

Question 74

A company runs an application on a fleet of Amazon EC2 instances that are in private subnets behind an internet-facing Application Load Balancer (ALB). The ALB is the origin for an Amazon CloudFront distribution. An AWS WAF web ACL that contains various AWS managed rules is associated with the CloudFront distribution.

The company needs a solution that will prevent internet traffic from directly accessing the ALB.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a new web ACL that contains the same rules that the existing web ACL contains. Associate the new web ACL with the ALB.

B.

Associate the existing web ACL with the ALB.

C.

Add a security group rule to the ALB to allow traffic from the AWS managed prefix list for CloudFront only.

D.

Add a security group rule to the ALB to allow only the various CloudFront IP address ranges.

Question 75

An education company is running a web application used by college students around the world. The application runs in an Amazon Elastic Container Service (Amazon ECS) cluster in an Auto Scaling group behind an Application Load Balancer (ALB). A system administrator detected a weekly spike in the number of failed logic attempts. Which overwhelm the application’s authentication service. All the failed login attempts originate from about 500 different IP addresses that change each week. A solutions architect must prevent the failed login attempts from overwhelming the authentication service.

Which solution meets these requirements with the MOST operational efficiency?

Options:

A.

Use AWS Firewall Manager to create a security group and security group policy to deny access from the IP addresses.

B.

Create an AWS WAF web ACL with a rate-based rule, and set the rule action to Block. Connect the web ACL to the ALB.

C.

Use AWS Firewall Manager to create a security group and security group policy to allow access only to specific CIDR ranges.

D.

Create an AWS WAF web ACL with an IP set match rule, and set the rule action to Block. Connect the web ACL to the ALB.

Question 76

A company is creating a REST API to share information with six of its partners based in the United States. The company has created an Amazon API Gateway Regional endpoint. Each of the six partners will access the API once per day to post daily sales figures.

After initial deployment, the company observes 1.000 requests per second originating from 500 different IP addresses around the world. The company believes this traffic is originating from a botnet and wants to secure its API while minimizing cost.

Which approach should the company take to secure its API?

Options:

A.

Create an Amazon CloudFront distribution with the API as the origin. Create an AWS WAF web ACL with a rule lo block clients thai submit more than five

requests per day. Associate the web ACL with the CloudFront distnbution. Configure CloudFront with an origin access identity (OAI) and associate it with the distribution. Configure API Gateway to ensure only the OAI can run the POST method.

B.

Create an Amazon CloudFront distribution with the API as the origin. Create an AWS WAF web ACL with a rule to block clients that submit more than five requests per day. Associate the web ACL with the CloudFront distnbution. Add a custom header to the CloudFront distribution populated with an API key. Configure the API to require an API key on the POST method.

C.

Create an AWS WAF web ACL with a rule to allow access to the IP addresses used by the six partners. Associate the web ACL with the API. Create a resource policy with a request limit and associate it with the API. Configure the API to require an API key on the POST method.

D.

Create an AWS WAF web ACL with a rule to allow access to the IP addresses used by the six partners. Associate the web ACL with the API. Create a usage plan with a request limit and associate it with the API. Create an API key and add it to the usage plan.

Question 77

A company hosts a blog post application on AWS using Amazon API Gateway, Amazon DynamoDB, and AWS Lambda. The application currently does not use

API keys to authorize requests. The API model is as follows:

GET/posts/[postid] to get post details

GET/users[userid] to get user details

GET/comments/[commentid] to get comments details

The company has noticed users are actively discussing topics in the comments section, and the company wants to increase user engagement by marking the comments appears in real time.

Which design should be used to reduce comment latency and improve user experience?

Options:

A.

Use edge-optimized API with Amazon CloudFront to cache API responses.

B.

Modify the blog application code to request GET comment[commented] every 10 seconds.

C.

Use AWS AppSync and leverage WebSockets to deliver comments.

D.

Change the concurrency limit of the Lambda functions to lower the API response time.

Question 78

A company is using an organization in AWS Organizations to manage hundreds of AWS accounts. A solutions architect is working on a solution to provide baseline protection for the Open Web Application Security Project (OWASP) top 10 web application vulnerabilities. The solutions architect is using AWS WAF for all existing and new Amazon CloudFront distributions that are deployed within the organization.

Which combination of steps should the solutions architect take to provide the baseline protection? (Select THREE.)

Options:

A.

Enable AWS Config in all accounts.

B.

Enable Amazon GuardDuty in all accounts.

C.

Enable all features for the organization.

D.

Use AWS Firewall Manager to deploy AWS WAF rules in all accounts for all CloudFront distributions.

E.

Use AWS Shield Advanced to deploy AWS WAF rules in all accounts for all CloudFront distributions.

F.

Use AWS Security Hub to deploy AWS WAF rules in all accounts for all CloudFront distributions.

Question 79

A company is migrating its development and production workloads to a new organization in AWS Organizations. The company has created a separate member account for development and a separate member account for production. Consolidated billing is linked to the management account. In the management account, a solutions architect needs to create an 1AM user that can stop or terminate resources in both member accounts.

Which solution will meet this requirement?

Options:

A.

Create an IAM user and a cross-account role in the management account. Configure the cross-account role with least privilege access to the member accounts.

B.

Create an IAM user in each member account. In the management account, create a cross-account role that has least privilege access. Grant the IAM users access to the cross-account role by using a trust policy.

C.

Create an IAM user in the management account. In the member accounts, create an IAM group that has least privilege access. Add the IAM user from the management account to each IAM group in the member accounts.

D.

Create an IAM user in the management account. In the member accounts, create cross-account roles that have least privilege access. Grant the IAM user access to the roles by using a trust policy.

Question 80

A solutions architect needs to improve an application that is hosted in the AWS Cloud. The application uses an Amazon Aurora MySQL DB instance that is experiencing overloaded connections. Most of the application's operations insert records into the database. The application currently stores credentials in a text-based configuration file.

The solutions architect needs to implement a solution so that the application can handle the current connection load. The solution must keep the credentials secure and must provide the ability to rotate the credentials automatically on a regular basis.

Which solution will meet these requirements?

Options:

A.

Deploy an Amazon RDS Proxy layer in front of the DB instance. Store the connection credentials as a secret in AWS Secrets Manager.

B.

Deploy an Amazon RDS Proxy layer in front of the DB instance. Store the connection credentials in AWS Systems Manager Parameter Store.

C.

Create an Aurora Replica. Store the connection credentials as a secret in AWS Secrets Manager.

D.

Create an Aurora Replica. Store the connection credentials in AWS Systems Manager Parameter Store.

Question 81

A company is creating a centralized logging service running on Amazon EC2 that will receive and analyze logs from hundreds of AWS accounts. AWS PrivateLink is being used to provide connectivity between the client services and the logging service.

In each AWS account with a client, an interface endpoint has been created for the logging service and is available. The logging service running on EC2 instances with a Network Load Balancer (NLB) are deployed in different subnets. The clients are unable to submit logs using the VPC endpoint.

Which combination of steps should a solutions architect take to resolve this issue? (Select TWO.)

Options:

A.

Check that the NACL is attached to the logging service subnet to allow communications to and from the NLB subnets. Check that the NACL is attached to the NLB subnet to allow communications to and from the logging service subnets running on EC2 instances.

B.

Check that the NACL is attached to the logging service subnets to allow communications to and from the interface endpoint subnets. Check that the NACL is attached to the interface endpoint subnet to allow communications to and from the logging service subnets running on EC2 instances.

C.

Check the security group for the logging service running on the EC2 instances to ensure it allows Ingress from the NLB subnets.

D.

Check the security group for the loggia service running on EC2 instances to ensure it allows ingress from the clients.

E.

Check the security group for the NLB to ensure it allows ingress from the interlace endpoint subnets.

Question 82

A company is migrating a document processing workload to AWS. The company has updated many applications to natively use the Amazon S3 API to store, retrieve, and modify documents that a processing server generates at a rate of approximately 5 documents every second. After the document processing is finished, customers can download the documents directly from Amazon S3.

During the migration, the company discovered that it could not immediately update the processing server that generates many documents to support the S3 API. The server runs on Linux and requires fast local access to the files that the server generates and modifies. When the server finishes processing, the files must be available to the public for download within 30 minutes.

Which solution will meet these requirements with the LEAST amount of effort?

Options:

A.

Migrate the application to an AWS Lambda function. Use the AWS SDK for Java to generate, modify, and access the files that the company stores directly in Amazon S3.

B.

Set up an Amazon S3 File Gateway and configure a file share that is linked to the document store. Mount the file share on an Amazon EC2 instance by using NFS. When changes occur in Amazon S3, initiate a RefreshCache API call to update the S3 File Gateway.

C.

Configure Amazon FSx for Lustre with an import and export policy. Link the new file system to an S3 bucket. Install the Lustre client and mount the document store to an Amazon EC2 instance by using NFS.

D.

Configure AWS DataSync to connect to an Amazon EC2 instance. Configure a task to synchronize the generated files to and from Amazon S3.

Question 83

A company is building a hybrid environment that includes servers in an on-premises data center and in the AWS Cloud. The company has deployed Amazon EC2 instances in three VPCs. Each VPC is in a different AWS Region. The company has established an AWS Direct Connect connection to the data center from the Region that is closest to the data center.

The company needs the servers in the on-premises data center to have access to the EC2 instances in all three VPCs. The servers in the on-premises data center also must have access to AWS public services.

Which combination of steps will meet these requirements with the LEAST cost? (Select TWO.)

Options:

A.

Create a Direct Connect gateway in the Region that is closest to the data center. Attach the Direct Connect connection to the Direct Connect gateway. Use the

B.

Direct Connect gateway to connect the VPCs in the other two Regions.

C.

Set up additional Direct Connect connections from the on-premises data center to the other two Regions.

D.

Create a private VIE. Establish an AWS Site-to-Site VPN connection over the private VIF to the VPCs in the other two Regions.

E.

Create a public VIF. Establish an AWS Site-to-Site VPN connection over the public VIF to the VPCs in the other two Regions.

F.

Use VPC peering to establish a connection between the VPCs across the Regions. Create a private VIF with the existing Direct Connect connection to connect to the peered VPCs.

Question 84

A company uses a service to collect metadata from applications that the company hosts on premises. Consumer devices such as TVs and internet radios access the applications. Many older devices do not support certain HTTP headers and exhibit errors when these headers are present in responses. The company has configured an on-premises load balancer to remove the unsupported headers from responses sent to older devices, which the company identified by the User-Agent headers.

The company wants to migrate the service to AWS, adopt serverless technologies, and retain the ability to support the older devices. The company has already migrated the applications into a set of AWS Lambda functions.

Which solution will meet these requirements?

Options:

A.

Create an Amazon CloudFront distribution for the metadata service. Create an Application Load Balancer (ALB). Configure the CloudFront distribution to forward requests to the ALB. Configure the ALB to invoke the correct Lambda function for each type of request. Create a CloudFront function to remove the problematic headers based on the value of the User-Agent header.

B.

Create an Amazon API Gateway REST API for the metadata service. Configure API Gateway to invoke the correct Lambda function for each type of request. Modify the default gateway responses to remove the problematic headers based on the value of the User-Agent header.

C.

Create an Amazon API Gateway HTTP API for the metadata service. Configure API Gateway to invoke the correct Lambda function for each type of request. Create a response mapping template to remove the problematic headers based on the value of the User-Agent. Associate the response data mapping with the HTTP API.

D.

Create an Amazon CloudFront distribution for the metadata service. Create an Application Load Balancer (ALB). Configure the CloudFront distribution to forward requests to the ALB. Configure the ALB to invoke the correct Lambda function for each type of request. Create a Lambda@Edge function that will remove the problematic headers in response to viewer requests based on the value of the User-Agent header.

Question 85

A company has a legacy monolithic application that is critical to the company's business. The company hosts the application on an Amazon EC2 instance that runs Amazon Linux 2. The company's application team receives a directive from the legal department to back up the data from the instance's encrypted Amazon

Elastic Block Store (Amazon EBS) volume to an Amazon S3 bucket. The application team does not have the administrative SSH key pair for the instance. The application must continue to serve the users.

Which solution will meet these requirements?

Options:

A.

Attach a role to the instance with permission to write to Amazon S3. Use the AWS Systems Manager Session Manager option to gain access to the instance and run commands to copy data into Amazon S3.

B.

Create an image of the instance with the reboot option turned on. Launch a new EC2 instance from the image. Attach a role to the new instance with permission to write to Amazon S3. Run a command to copy data into Amazon S3.

C.

Take a snapshot of the EBS volume by using Amazon Data Lifecycle Manager (Amazon DLM). Copy the data to Amazon S3.

D.

Create an image of the instance. Launch a new EC2 instance from the image. Attach a role to the new instance with permission to write to Amazon S3. Run a command to copy data into Amazon S3.

Question 86

A company wants to migrate to AWS. The company wants to use a multi-account structure with centrally managed access to all accounts and applications. The company also wants to keep the traffic on a private network. Multi-factor authentication (MFA) is required at login, and specific roles are assigned to user groups.

The company must create separate accounts for development. staging, production, and shared network. The production account and the shared network account must have connectivity to all accounts. The development account and the staging account must have access only to each other.

Which combination of steps should a solutions architect take 10 meet these requirements? (Choose three.)

Options:

A.

Deploy a landing zone environment by using AWS Control Tower. Enroll accounts and invite existing accounts into the resulting organization in AWS Organizations.

B.

Enable AWS Security Hub in all accounts to manage cross-account access. Collect findings through AWS CloudTrail to force MFA login.

C.

Create transit gateways and transit gateway VPC attachments in each account. Configure appropriate route tables.

D.

Set up and enable AWS IAM Identity Center (AWS Single Sign-On). Create appropriate permission sets with required MFA for existing accounts.

E.

Enable AWS Control Tower in all Recounts to manage routing between accounts. Collect findings through AWS CloudTrail to force MFA login.

F.

Create IAM users and groups. Configure MFA for all users. Set up Amazon Cognito user pools and identity pools to manage access to accounts and between accounts.

Question 87

A company has created an OU in AWS Organizations for each of its engineering teams Each OU owns multiple AWS accounts. The organization has hundreds of AWS accounts A solutions architect must design a solution so that each OU can view a breakdown of usage costs across its AWS accounts. Which solution meets these requirements?

Options:

A.

Create an AWS Cost and Usage Report (CUR) for each OU by using AWS Resource Access Manager Allow each team to visualize the CUR through an Amazon QuickSight dashboard.

B.

Create an AWS Cost and Usage Report (CUR) from the AWS Organizations management account- Allow each team to visualize the CUR through an Amazon QuickSight dashboard

C.

Create an AWS Cost and Usage Report (CUR) in each AWS Organizations member account Allow each team to visualize the CUR through an Amazon QuickSight dashboard.

D.

Create an AWS Cost and Usage Report (CUR) by using AWS Systems Manager Allow each team to visualize the CUR through Systems Manager OpsCenter dashboards

Question 88

A company has a latency-sensitive trading platform that uses Amazon DynamoDB as a storage backend. The company configured the DynamoDB table to use on-demand capacity mode. A solutions architect needs to design a solution to improve the performance of the trading platform. The new solution must ensure high availability for the trading platform.

Which solution will meet these requirements with the LEAST latency?

Options:

A.

Create a two-node DynamoDB Accelerator (DAX) cluster Configure an application to read and write data by using DAX.

B.

Create a three-node DynamoDB Accelerator (DAX) cluster. Configure an application to read data by using DAX and to write data directly to the DynamoDB table.

C.

Create a three-node DynamoDB Accelerator (DAX) cluster. Configure an application to read data directly from the DynamoDB table and to write data by using DAX.

D.

Create a single-node DynamoD8 Accelerator (DAX) cluster. Configure an application to read data by using DAX and to write data directly to the DynamoD8 table.

Question 89

A company is using Amazon OpenSearch Service to analyze data. The company loads data into an OpenSearch Service cluster with 10 data nodes from an Amazon S3 bucket that uses S3 Standard storage. The data resides in the cluster for 1 month for read-only analysis. After 1 month, the company deletes the index that contains the data from the cluster. For compliance purposes, the company must retain a copy of all input data.

The company is concerned about ongoing costs and asks a solutions architect to recommend a new solution.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Replace all the data nodes with UltraWarm nodes to handle the expected capacity. Transition the input data from S3 Standard to S3 Glacier Deep Archive when the company loads the data into the cluster.

B.

Reduce the number of data nodes in the cluster to 2 Add UltraWarm nodes to handle the expected capacity. Configure the indexes to transition to UltraWarm when OpenSearch Service ingests the data. Transition the input data to S3 Glacier Deep Archive after 1 month by using an S3 Lifecycle policy.

C.

Reduce the number of data nodes in the cluster to 2. Add UltraWarm nodes to handle the expected capacity. Configure the indexes to transition to UltraWarm when OpenSearch Service ingests the data. Add cold storage nodes to the cluster Transition the indexes from UltraWarm to cold storage. Delete the input data from the S3 bucket after 1 month by using an S3 Lifecycle policy.

D.

Reduce the number of data nodes in the cluster to 2. Add instance-backed data nodes to handle the expected capacity. Transition the input data from S3 Standard to S3 Glacier Deep Archive when the company loads the data into the cluster.

Question 90

A company runs a serverless application in a single AWS Region. The application accesses external URLs and extracts metadata from those sites. The company uses an Amazon Simple Notification Service (Amazon SNS) topic to publish URLs to an Amazon Simple Queue Service (Amazon SQS) queue An AWS Lambda function uses the queue as an event source and processes the URLs from the queue Results are saved to an Amazon S3 bucket

The company wants to process each URL other Regions to compare possible differences in site localization URLs must be published from the existing Region. Results must be written to the existing S3 bucket in the current Region.

Which combination of changes will produce multi-Region deployment that meets these requirements? (Select TWO.)

Options:

A.

Deploy the SOS queue with the Lambda function to other Regions.

B.

Subscribe the SNS topic in each Region to the SQS queue.

C.

Subscribe the SQS queue in each Region to the SNS topics in each Region.

D.

Configure the SQS queue to publish URLs to SNS topics in each Region.

E.

Deploy the SNS topic and the Lambda function to other Regions.

Question 91

A finance company is running its business-critical application on current-generation Linux EC2 instances The application includes a self-managed MySQL database performing heavy I/O operations. The application is working fine to handle a moderate amount of traffic during the month. However, it slows down during the final three days of each month due to month-end reporting, even though the company is using Elastic Load Balancers and Auto Scaling within its infrastructure to meet the increased demand.

Which of the following actions would allow the database to handle the month-end load with the LEAST impact on performance?

Options:

A.

Pre-warming Elastic Load Balancers, using a bigger instance type, changing all Amazon EBS volumes to GP2 volumes.

B.

Performing a one-time migration of the database cluster to Amazon RDS. and creating several additional read replicas to handle the load during end of month

C.

Using Amazon CioudWatch with AWS Lambda to change the type. size, or IOPS of Amazon EBS volumes in the cluster based on a specific CloudWatch metric

D.

Replacing all existing Amazon EBS volumes with new PIOPS volumes that have the maximum available storage size and I/O per second by taking snapshots before the end of the month and reverting back afterwards.

Question 92

A company is in the process of implementing AWS Organizations to constrain its developers to use only Amazon EC2. Amazon S3 and Amazon DynamoDB. The developers account resides In a dedicated organizational unit (OU). The solutions architect has implemented the following SCP on the developers account:

Question # 92

When this policy is deployed, IAM users in the developers account are still able to use AWS services that are not listed in the policy. What should the solutions architect do to eliminate the developers' ability to use services outside the scope of this policy?

Options:

A.

Create an explicit deny statement for each AWS service that should be constrained

B.

Remove the Full AWS Access SCP from the developer account's OU

C.

Modify the Full AWS Access SCP to explicitly deny all services

D.

Add an explicit deny statement using a wildcard to the end of the SCP

Question 93

A company is running applications on AWS in a multi-account environment. The company's sales team and marketing team use separate AWS accounts in AWS Organizations.

The sales team stores petabytes of data in an Amazon S3 bucket. The marketing team uses Amazon QuickSight for data visualizations. The marketing team needs access to data that the sates team stores in the S3 bucket. The company has encrypted the S3 bucket with an AWS Key Management Service (AWS KMS) key. The marketing team has already created the IAM service role for QuickSight to provide QuickSight access in the marketing AWS account. The company needs a solution that will provide secure access to the data in the S3 bucket across AWS accounts.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a new S3 bucket in the marketing account. Create an S3 replication rule in the sales account to copy the objects to the new S3 bucket in the marketing account. Update the QuickSight permissions in the marketing account to grant access to the new S3 bucket.

B.

Create an SCP to grant access to the S3 bucket to the marketing account. Use AWS Resource Access Manager (AWS RAM) to share the KMS key from the sates account with the marketing account. Update the QuickSight permissions in the marketing account to grant access to the S3 bucket.

C.

Update the S3 bucket policy in the marketing account to grant access to the QuickSight role. Create a KMS grant for the encryption key that is used in the S3 bucket. Grant decrypt access to the QuickSight role. Update the QuickSight permissions in the marketing account to grant access to the S3 bucket.

D.

Create an IAM role in the sales account and grant access to the S3 bucket. From the marketing account, assume the IAM role in the sales account to access the S3 bucket. Update the QuickSight rote, to create a trust relationship with the new IAM role in the sales account.

Question 94

A retail company is operating its ecommerce application on AWS. The application runs on Amazon EC2 instances behind an Application Load Balancer (ALB). The company uses an Amazon RDS DB instance as the database backend. Amazon CloudFront is configured with one origin that points to the ALB. Static content is cached. Amazon Route 53 is used to host all public zones.

After an update of the application, the ALB occasionally returns a 502 status code (Bad Gateway) error. The root cause is malformed HTTP headers that are returned to the ALB. The webpage returns successfully when a solutions architect reloads the webpage immediately after the error occurs.

While the company is working on the problem, the solutions architect needs to provide a custom error page instead of the standard ALB error page to visitors.

Which combination of steps will meet this requirement with the LEAST amount of operational overhead? (Choose two.)

Options:

A.

Create an Amazon S3 bucket. Configure the S3 bucket to host a static webpage. Upload the custom error pages to Amazon S3.

B.

Create an Amazon CloudWatch alarm to invoke an AWS Lambda function if the ALB health check response Target.FailedHealthChecks is greater than 0. Configure the Lambda function to modify the forwarding rule at the ALB to point to a publicly accessible web server.

C.

Modify the existing Amazon Route 53 records by adding health checks. Configure a fallback target if the health check fails. Modify DNS records to point to a publicly accessible webpage.

D.

Create an Amazon CloudWatch alarm to invoke an AWS Lambda function if the ALB health check response Elb.InternalError is greater than 0. Configure the Lambda function to modify the forwarding rule at the ALB to point to a public accessible web server.

E.

Add a custom error response by configuring a CloudFront custom error page. Modify DNS records to point to a publicly accessible web page.

Question 95

A company has a serverless application comprised of Amazon CloudFront, Amazon API Gateway, and AWS Lambda functions. The current deployment process of the application code is to create a new version number of the Lambda function and run an AWS CLI script to update. If the new function version has errors, another CLI script reverts by deploying the previous working version of the function. The company would like to decrease the time to deploy new versions of the application logic provided by the Lambda functions, and also reduce the time to detect and revert when errors are identified.

How can this be accomplished?

Options:

A.

Create and deploy nested AWS CloudFormation stacks with the parent stack consisting of the AWS CloudFront distribution and API Gateway, and the child stack containing the Lambda function. For changes to Lambda, create an AWS CloudFormation change set and deploy; if errors are triggered, revert the AWS CloudFormation change set to the previous version.

B.

Use AWS SAM and built-in AWS CodeDeploy to deploy the new Lambda version, gradually shift traffic to the new version, and use pre-traffic and post-traffic test functions to verify code. Rollback if Amazon CloudWatch alarms are triggered.

C.

Refactor the AWS CLI scripts into a single script that deploys the new Lambda version. When deployment is completed, the script tests execute. If errors are detected, revert to the previous Lambda version.

D.

Create and deploy an AWS CloudFormation stack that consists of a new API Gateway endpoint that references the new Lambda version. Change the CloudFront origin to the new API Gateway endpoint, monitor errors and if detected, change the AWS CloudFront origin to the previous API Gateway endpoint.

Question 96

A company is running a web application in the AWS Cloud. The application consists of dynamic content that is created on a set of Amazon EC2 instances. The

EC2 instances run in an Auto Scaling group that is configured as a target group for an Application Load Balancer (ALB).

The company is using an Amazon CloudFront distribution to distribute the application globally. The CloudFront distribution uses the ALB as an origin. The company uses Amazon Route 53 for DNS and has created an A record of www.example.com for the CloudFront distribution.

A solutions architect must configure the application so that itis highly available and fault tolerant.

Which solution meets these requirements?

Options:

A.

Provision a full, secondary application deployment in a different AWS Region. Update the Route 53 A record to be a failover record. Add both of the CloudFront distributions as values. Create Route 53 health checks.

B.

Provision an ALB, an Auto Scaling group, and EC2 instances in a different AWS Region. Update the CloudFront distribution, and create a second origin for the new ALB. Create an origin group for the two origins. Configure one origin as primary and one origin as secondary.

C.

Provision an Auto Scaling group and EC2 instances in a different AWS Region. Create a second target for the new Auto Scaling group in the ALB. Set up the failover routing algorithm on the ALB.

D.

Provision a full, secondary application deployment in a different AWS Region. Create a second CloudFront distribution, and add the new application setup as an origin. Create an AWS Global Accelerator accelerator. Add both of the CloudFront distributions as endpoints.

Question 97

A company runs a proprietary stateless ETL application on an Amazon EC2 Linux instance. The application is a Linux binary, and the source code cannot be modified. The application is single-threaded, uses 2 GB of RAM. and is highly CPU intensive The application is scheduled to run every 4 hours and runs for up to 20 minutes A solutions architect wants to revise the architecture for the solution.

Which strategy should the solutions architect use?

Options:

A.

Use AWS Lambda to run the application. Use Amazon CloudWatch Logs to invoke the Lambda function every 4 hours.

B.

Use AWS Batch to run the application. Use an AWS Step Functions state machine to invoke the AWS Batch job every 4 hours.

C.

Use AWS Fargate to run the application. Use Amazon EventBridge (Amazon CloudWatch Events) to invoke the Fargate task every 4 hours.

D.

Use Amazon EC2 Spot Instances to run the application. Use AWS CodeDeploy to deploy and run the application every 4 hours.

Question 98

A company is running several workloads in a single AWS account. A new company policy states that engineers can provision only approved resources and that engineers must use AWS CloudFormation to provision these resources. A solutions architect needs to create a solution to enforce the new restriction on the IAM role that the engineers use for access.

What should the solutions architect do to create the solution?

Options:

A.

Upload AWS CloudFormation templates that contain approved resources to an Amazon S3 bucket. Update the IAM policy for the engineers' IAM role to only allow access to Amazon S3 and AWS CloudFormation. Use AWS CloudFormation templates to provision resources.

B.

Update the IAM policy for the engineers' IAM role with permissions to only allow provisioning of approved resources and AWS CloudFormation. Use AWS CloudFormation templates to create stacks with approved resources.

C.

Update the IAM policy for the engineers' IAM role with permissions to only allow AWS CloudFormation actions. Create a new IAM policy with permission to provision approved resources, and assign the policy to a new IAM service role. Assign the IAM service role to AWS CloudFormation during stack creation.

D.

Provision resources in AWS CloudFormation stacks. Update the IAM policy for the engineers' IAM role to only allow access to their own AWS CloudFormation stack.

Question 99

A company built an application based on AWS Lambda deployed in an AWS CloudFormation stack. The last production release of the web application introduced an issue that resulted in an outage lasting several minutes. A solutions architect must adjust the deployment process to support a canary release.

Which solution will meet these requirements?

Options:

A.

Create an alias for every new deployed version of the Lambda function. Use the AWS CLI update-alias command with the routing-config parameter to distribute the load.

B.

Deploy the application into a new CloudFormation stack. Use an Amazon Route 53 weighted routing policy to distribute the load.

C.

Create a version for every new deployed Lambda function. Use the AWS CLI update-function-configuration command with the routing-config parameter to distribute the load.

D.

Configure AWS CodeDeploy and use CodeDeployDefault.OneAtATime in the Deployment configuration to distribute the load.

Question 100

A health insurance company stores personally identifiable information (PII) in an Amazon S3 bucket. The company uses server-side encryption with S3 managed encryption keys (SSE-S3) to encrypt the objects. According to a new requirement, all current and future objects in the S3 bucket must be encrypted by keys that the company’s security team manages. The S3 bucket does not have versioning enabled.

Which solution will meet these requirements?

Options:

A.

In the S3 bucket properties, change the default encryption to SSE-S3 with a customer managed key. Use the AWS CLI to re-upload all objects in the S3 bucket. Set an S3 bucket policy to deny unencrypted PutObject requests.

B.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to deny unencrypted PutObject requests. Use the AWS CLI to re-upload all objects in the S3 bucket.

C.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to automatically encrypt objects on GetObject and PutObject requests.

D.

In the S3 bucket properties, change the default encryption to AES-256 with a customer managed key. Attach a policy to deny unencrypted PutObject requests to any entities that access the S3 bucket. Use the AWS CLI to re-upload all objects in the S3 bucket.

Question 101

A company is migrating some of its applications to AWS. The company wants to migrate and modernize the applications quickly after it finalizes networking and security strategies. The company has set up an AWS Direct Connection connection in a central network account.

The company expects to have hundreds of AWS accounts and VPCs in the near future. The corporate network must be able to access the resources on AWS seamlessly and also must be able to communicate with all the VPCs. The company also wants to route its cloud resources to the internet through its on-premises data center.

Which combination of steps will meet these requirements? (Choose three.)

Options:

A.

Create a Direct Connect gateway in the central account. In each of the accounts, create an association proposal by using the Direct Connect gateway and the account ID for every virtual private gateway.

B.

Create a Direct Connect gateway and a transit gateway in the central network account. Attach the transit gateway to the Direct Connect gateway by using a transit VIF.

C.

Provision an internet gateway. Attach the internet gateway to subnets. Allow internet traffic through the gateway.

D.

Share the transit gateway with other accounts. Attach VPCs to the transit gateway.

E.

Provision VPC peering as necessary.

F.

Provision only private subnets. Open the necessary route on the transit gateway and customer gateway to allow outbound internet traffic from AWS to flow through NAT services that run in the data center.

Question 102

An AWS partner company is building a service in AWS Organizations using Its organization named org. This service requires the partner company to have access to AWS resources in a customer account, which is in a separate organization named org2 The company must establish least privilege security access using an API or command line tool to the customer account

What is the MOST secure way to allow org1 to access resources h org2?

Options:

A.

The customer should provide the partner company with their AWS account access keys to log in and perform the required tasks

B.

The customer should create an IAM user and assign the required permissions to the IAM user The customer should then provide the credentials to the partner company to log In and perform the required tasks.

C.

The customer should create an IAM role and assign the required permissions to the IAM role. The partner company should then use the IAM rote's Amazon Resource Name (ARN) when requesting access to perform the required tasks

D.

The customer should create an IAM rote and assign the required permissions to the IAM rote. The partner company should then use the IAM rote's Amazon Resource Name (ARN). Including the external ID in the IAM role's trust pokey, when requesting access to perform the required tasks

Question 103

A company's solutions architect is reviewing a web application that runs on AWS. The application references static assets in an Amazon S3 bucket in the us-east-1 Region. The company needs resiliency across multiple AWS Regions. The company already has created an S3 bucket in a second Region.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure the application to write each object to both S3 buckets. Set up an Amazon Route 53 public hosted zone with a record set by using a weighted routing policy for each S3 bucket. Configure the application to reference the objects by using the Route 53 DNS name.

B.

Create an AWS Lambda function to copy objects from the S3 bucket in us-east-1 to the S3 bucket in the second Region. Invoke the Lambda function each time an object is written to the S3 bucket in us-east-1. Set up an Amazon CloudFront distribution with an origin group that contains the two S3 buckets as origins.

C.

Configure replication on the S3 bucket in us-east-1 to replicate objects to the S3 bucket in the second Region Set up an Amazon CloudFront distribution with an origin group that contains the two S3 buckets as origins.

D.

Configure replication on the S3 bucket in us-east-1 to replicate objects to the S3 bucket in the second Region. If failover is required, update the application code to load S3 objects from the S3 bucket in the second Region.

Question 104

A company is building a serverless application that runs on an AWS Lambda function that is attached to a VPC. The company needs to integrate the application with a new service from an external provider. The external provider supports only requests that come from public IPv4 addresses that are in an allow list.

The company must provide a single public IP address to the external provider before the application can start using the new service.

Which solution will give the application the ability to access the new service?

Options:

A.

Deploy a NAT gateway. Associate an Elastic IP address with the NAT gateway. Configure the VPC to use the NAT gateway.

B.

Deploy an egress-only internet gateway. Associate an Elastic IP address with the egress-only internet gateway. Configure the elastic network interface on the Lambda function to use the egress-only internet gateway.

C.

Deploy an internet gateway. Associate an Elastic IP address with the internet gateway. Configure the Lambda function to use the internet gateway.

D.

Deploy an internet gateway. Associate an Elastic IP address with the internet gateway. Configure the default route in the public VPC route table to use the internet gateway.

Question 105

A company is planning to host a web application on AWS and works to load balance the traffic across a group of Amazon EC2 instances. One of the security requirements is to enable end-to-end encryption in transit between the client and the web server.

Which solution will meet this requirement?

Options:

A.

Place the EC2 instances behind an Application Load Balancer (ALB) Provision an SSL certificate using AWS Certificate Manager (ACM), and associate the SSL certificate with the ALB. Export the SSL certificate and install it on each EC2 instance. Configure the ALB to listen on port 443 and to forward traffic to port 443 on the instances.

B.

Associate the EC2 instances with a target group. Provision an SSL certificate using AWS Certificate Manager (ACM). Create an Amazon CloudFront distribution and configure It to use the SSL certificate. Set CloudFront to use the target group as the origin server

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Provision an SSL certificate using AWS Certificate Manager (ACM), and associate the SSL certificate with the ALB. Provision a third-party SSL certificate and install it on each EC2 instance. Configure the ALB to listen on port 443 and to forward traffic to port 443 on the instances.

D.

Place the EC2 instances behind a Network Load Balancer (NLB). Provision a third-party SSL certificate and install it on the NLB and on each EC2 instance. Configure the NLB to listen on port 443 and to forward traffic to port 443 on the instances.

Question 106

A company wants to use AWS to create a business continuity solution in case the company's main on-premises application fails. The application runs on physical servers that also run other applications. The on-premises application that the company is planning to migrate uses a MySQL database as a data store. All the company's on-premises applications use operating systems that are compatible with Amazon EC2.

Which solution will achieve the company's goal with the LEAST operational overhead?

Options:

A.

Install the AWS Replication Agent on the source servers, including the MySQL servers. Set up replication for all servers. Launch test instances for regular drills. Cut over to the test instances to fail over the workload in the case of a failure event.

B.

Install the AWS Replication Agent on the source servers, including the MySQL servers. Initialize AWS Elastic Disaster Recovery in the target AWS Region. Define the launch settings. Frequently perform failover and fallback from the most recent point in time.

C.

Create AWS Database Migration Service (AWS DMS) replication servers and a target Amazon Aurora MySQL DB cluster to host the database. Create a DMS replication task to copy the existing data to the target DB cluster. Create a local AWS Schema Conversion Tool (AWS SCT) change data capture (CDC) task to keep the data synchronized. Install the rest of the software on EC2 instances by starting with a compatible base AMI.

D.

Deploy an AWS Storage Gateway Volume Gateway on premises. Mount volumes on all on-premises servers. Install the application and the MySQL database on the new volumes. Take regular snapshots. Install all the software on EC2 Instances by starting with a compatible base AMI. Launch a Volume Gateway on an EC2 instance. Restore the volumes from the latest snapshot. Mount the new volumes on the EC2 instances in the case of a failure event.

Question 107

A global media company is planning a multi-Region deployment of an application. Amazon DynamoDB global tables will back the deployment to keep the user experience consistent across the two continents where users are concentrated. Each deployment will have a public Application Load Balancer (ALB). The company manages public DNS internally. The company wants to make the application available through an apex domain.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Migrate public DNS to Amazon Route 53. Create CNAME records for the apex domain to point to the ALB. Use a geolocation routing policy to route traffic based on user location.

B.

Place a Network Load Balancer (NLB) in front of the ALB. Migrate public DNS to Amazon Route 53. Create a CNAME record for the apex domain to point to the NLB's static IP address. Use a geolocation routing policy to route traffic based on user location.

C.

Create an AWS Global Accelerator accelerator with multiple endpoint groups that target endpoints in appropriate AWS Regions. Use the accelerator's static IP address to create a record in public DNS for the apex domain.

D.

Create an Amazon API Gateway API that is backed by AWS Lambda in one of the AWS Regions. Configure a Lambda function to route traffic to application deployments by using the round robin method. Create CNAME records for the apex domain to point to the API's URL.

Question 108

A company wants to use a third-party software-as-a-service (SaaS) application. The third-party SaaS application is consumed through several API calls. The third-party SaaS application also runs on AWS inside a VPC.

The company will consume the third-party SaaS application from inside a VPC. The company has internal security policies that mandate the use of private connectivity that does not traverse the internet. No resources that run in the company VPC are allowed to be accessed from outside the company’s VPC. All permissions must conform to the principles of least privilege.

Which solution meets these requirements?

Options:

A.

Create an AWS PrivateLink interface VPC endpoint. Connect this endpoint to the endpoint service that the third-party SaaS application provides. Create a security group to limit the access to the endpoint. Associate the security group with the endpoint.

B.

Create an AWS Site-to-Site VPN connection between the third-party SaaS application and the company VPC. Configure network ACLs to limit access across the VPN tunnels.

C.

Create a VPC peering connection between the third-party SaaS application and the company VPUpdate route tables by adding the needed routes for the peering connection.

D.

Create an AWS PrivateLink endpoint service. Ask the third-party SaaS provider to create an interface VPC endpoint for this endpoint service. Grant permissions for the endpoint service to the specific account of the third-party SaaS provider.

Question 109

A company has hundreds of AWS accounts. The company recently implemented a centralized internal process for purchasing new Reserved Instances and modifying existing Reserved Instances. This process requires all business units that want to purchase or modify Reserved Instances to submit requests to a dedicated team for procurement. Previously, business units directly purchased or modified Reserved Instances in their own respective AWS accounts autonomously.

A solutions architect needs to enforce the new process in the most secure way possible.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

Options:

A.

Ensure that all AWS accounts are part of an organization in AWS Organizations with all features enabled.

B.

Use AWS Config to report on the attachment of an IAM policy that denies access to the ec2:PurchaseReservedInstancesOffering action and the ec2:ModifyReservedInstances action.

C.

In each AWS account, create an IAM policy that denies the ec2:PurchaseReservedInstancesOffering action and the ec2:ModifyReservedInstances action.

D.

Create an SCP that denies the ec2:PurchaseReservedInstancesOffering action and the ec2:ModifyReservedInstances action. Attach the SCP to each OU of the organization.

E.

Ensure that all AWS accounts are part of an organization in AWS Organizations that uses the consolidated billing feature.

Question 110

A company uses AWS Organizations for a multi-account setup in the AWS Cloud. The company uses AWS Control Tower for governance and uses AWS Transit Gateway for VPC connectivity across accounts.

In an AWS application account, the company's application team has deployed a web application that uses AWS Lambda and Amazon RDS. The company's database administrators have a separate DBA account and use the account to centrally manage all the databases across the organization. The database administrators use an Amazon EC2 instance that is deployed in the DBA account to access an RDS database that is deployed in the application account.

The application team has stored the database credentials as secrets in AWS Secrets Manager in the application account. The application team is manually sharing the secrets with the database administrators. The secrets are encrypted by the default AWS managed key for Secrets Manager in the application account. A solutions architect needs to implement a solution that gives the database administrators access to the database and eliminates the need to manually share the secrets.

Which solution will meet these requirements?

Options:

A.

Use AWS Resource Access Manager (AWS RAM) to share the secrets from the application account with the DBA account. In the DBA account, create an IAM role that is named DBA-Admin. Grant the role the required permissions to access the shared secrets. Attach the DBA-Admin role to the EC2 instance for access to the cross-account secrets.

B.

In the application account, create an IAM role that is named DBA-Secret. Grant the role the required permissions to access the secrets. In the DBA account, create an IAM role that is named DBA-Admin. Grant the DBA-Admin role the required permissions to assume the DBA-Secret role in the application account. Attach the DBA-Admin role to the EC2 instance for access to the cross-account secrets.

C.

In the DBA account, create an IAM role that is named DBA-Admin. Grant the role the required permissions to access the secrets and the default AWS managed key in the application account. In the application account, attach resource-based policies to the key to allow access from the DBA account. Attach the DBA-Admin role to the EC2 instance for access to the cross-account secrets.

D.

In the DBA account, create an IAM role that is named DBA-Admin. Grant the role the required permissions to access the secrets in the application account. Attach an SCP to the application account to allow access to the secrets from the DBA account. Attach the DBA-Admin role to the EC2 instance for access to the cross-account secrets.

Question 111

A company is developing a new serverless API by using Amazon API Gateway and AWS Lambda. The company integrated the Lambda functions with API Gateway to use several shared libraries and custom classes.

A solutions architect needs to simplify the deployment of the solution and optimize for code reuse.

Which solution will meet these requirements?

Options:

A.

Deploy the shared libraries and custom classes into a Docker image. Store the image in an S3 bucket. Create a Lambda layer that uses the Docker image as the source. Deploy the API's Lambda functions as Zip packages. Configure the packages to use the Lambda layer.

B.

Deploy the shared libraries and custom classes to a Docker image. Upload the image to Amazon Elastic Container Registry (Amazon ECR). Create a Lambda layer that uses the Docker image as the source. Deploy the API's Lambda functions as Zip packages. Configure the packages to use the Lambda layer.

C.

Deploy the shared libraries and custom classes to a Docker container in Amazon Elastic Container Service (Amazon ECS) by using the AWS Fargate launch type. Deploy the API's Lambda functions as Zip packages. Configure the packages to use the deployed container as a Lambda layer.

D.

Deploy the shared libraries, custom classes, and code for the API's Lambda functions to a Docker image. Upload the image to Amazon Elastic Container Registry (Amazon ECR). Configure the API's Lambda functions to use the Docker image as the deployment package.

Question 112

A software as a service (SaaS) based company provides a case management solution to customers A3 part of the solution. The company uses a standalone Simple Mail Transfer Protocol (SMTP) server to send email messages from an application. The application also stores an email template for acknowledgement email messages that populate customer data before the application sends the email message to the customer.

The company plans to migrate this messaging functionality to the AWS Cloud and needs to minimize operational overhead.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Set up an SMTP server on Amazon EC2 instances by using an AMI from the AWS Marketplace. Store the email template in an Amazon S3 bucket. Create an AWS Lambda function to retrieve the template from the S3 bucket and to merge the customer data from the application with the template. Use an SDK in the Lambda function to send the email message.

B.

Set up Amazon Simple Email Service (Amazon SES) to send email messages. Store the email template in an Amazon S3 bucket. Create an AWS Lambda function to retrieve the template from the S3 bucket and to merge the customer data from the application with the template. Use an SDK in the Lambda function to send the email message.

C.

Set up an SMTP server on Amazon EC2 instances by using an AMI from the AWS Marketplace. Store the email template in Amazon Simple Email Service (Amazon SES) with parameters for the customer data. Create an AWS Lambda function to call the SES template and to pass customer data to replace the parameters. Use the AWS Marketplace SMTP server to send the email message.

D.

Set up Amazon Simple Email Service (Amazon SES) to send email messages. Store the email template on Amazon SES with parameters for the customer data. Create an AWS Lambda function to call the SendTemplatedEmail API operation and to pass customer data to replace the parameters and the email destination.

Question 113

A company that has multiple AWS accounts is using AWS Organizations. The company’s AWS accounts host VPCs, Amazon EC2 instances, and containers.

The company’s compliance team has deployed a security tool in each VPC where the company has deployments. The security tools run on EC2 instances and send information to the AWS account that is dedicated for the compliance team. The company has tagged all the compliance-related resources with a key of “costCenter” and a value or “compliance”.

The company wants to identify the cost of the security tools that are running on the EC2 instances so that the company can charge the compliance team’s AWS account. The cost calculation must be as accurate as possible.

What should a solutions architect do to meet these requirements?

Options:

A.

In the management account of the organization, activate the costCenter user-defined tag. Configure monthly AWS Cost and Usage Reports to save to an Amazon S3 bucket in the management account. Use the tag breakdown in the report to obtain the total cost for the costCenter tagged resources.

B.

In the member accounts of the organization, activate the costCenter user-defined tag. Configure monthly AWS Cost and Usage Reports to save to an Amazon S3 bucket in the management account. Schedule a monthly AWS Lambda function to retrieve the reports and calculate the total cost for the costCenter tagged resources.

C.

In the member accounts of the organization activate the costCenter user-defined tag. From the management account, schedule a monthly AWS Cost and Usage Report. Use the tag breakdown in the report to calculate the total cost for the costCenter tagged resources.

D.

Create a custom report in the organization view in AWS Trusted Advisor. Configure the report to generate a monthly billing summary for the costCenter tagged resources in the compliance team’s AWS account.

Question 114

A company is running a data-intensive application on AWS. The application runs on a cluster of hundreds of Amazon EC2 instances. A shared file system also runs on several EC2 instances that store 200 TB of data. The application reads and modifies the data on the shared file system and generates a report. The job runs once monthly, reads a subset of the files from the shared file system, and takes about 72 hours to complete. The compute instances scale in an Auto Scaling group, but the instances that host the shared file system run continuously. The compute and storage instances are all in the same AWS Region.

A solutions architect needs to reduce costs by replacing the shared file system instances. The file system must provide high performance access to the needed data for the duration of the 72-hour run.

Which solution will provide the LARGEST overall cost reduction while meeting these requirements?

Options:

A.

Migrate the data from the existing shared file system to an Amazon S3 bucket that uses the S3 Intelligent-Tiering storage class. Before the job runs each month, use Amazon FSx for Lustre to create a new file system with the data from Amazon S3 by using lazy loading. Use the new file system as the shared storage for the duration of the job. Delete the file system when the job is complete.

B.

Migrate the data from the existing shared file system to a large Amazon Elastic Block Store (Amazon EBS) volume with Multi-Attach enabled. Attach the EBS volume to each of the instances by using a user data script in the Auto Scaling group launch template. Use the EBS volume as the shared storage for the duration of the job. Detach the EBS volume when the job is complete.

C.

Migrate the data from the existing shared file system to an Amazon S3 bucket that uses the S3 Standard storage class. Before the job runs each month, use Amazon FSx for Lustre to create a new file system with the data from Amazon S3 by using batch loading. Use the new file system as the shared storage for the duration of the job. Delete the file system when the job is complete.

D.

Migrate the data from the existing shared file system to an Amazon S3 bucket. Before the job runs each month, use AWS Storage Gateway to create a file gateway with the data from Amazon S3. Use the file gateway as the shared storage for the job. Delete the file gateway when the job is complete.

Question 115

A company with global offices has a single 1 Gbps AWS Direct Connect connection to a single AWS Region. The company's on-premises network uses the connection to communicate with the company's resources in the AWS Cloud. The connection has a single private virtual interface that connects to a single VPC.

A solutions architect must implement a solution that adds a redundant Direct Connect connection in the same Region. The solution also must provide connectivity to other Regions through the same pair of Direct Connect connections as the company expands into other Regions.

Which solution meets these requirements?

Options:

A.

Provision a Direct Connect gateway. Delete the existing private virtual interface from the existing connection. Create the second Direct Connect connection. Create a new private virtual interlace on each connection, and connect both private victual interfaces to the Direct Connect gateway. Connect the Direct Connect gateway to the single VPC.

B.

Keep the existing private virtual interface. Create the second Direct Connect connection. Create a new private virtual interface on the new connection, and connect the new private virtual interface to the single VPC.

C.

Keep the existing private virtual interface. Create the second Direct Connect connection. Create a new public virtual interface on the new connection, and connect the new public virtual interface to the single VPC.

D.

Provision a transit gateway. Delete the existing private virtual interface from the existing connection. Create the second Direct Connect connection. Create a new private virtual interface on each connection, and connect both private virtual interfaces to the transit gateway. Associate the transit gateway with the single VPC.

Question 116

A company recently deployed an application on AWS. The application uses Amazon DynamoDB. The company measured the application load and configured the RCUs and WCUs on the DynamoDB table to match the expected peak load. The peak load occurs once a week for a 4-hour period and is double the average load. The application load is close to the average load tor the rest of the week. The access pattern includes many more writes to the table than reads of the table.

A solutions architect needs to implement a solution to minimize the cost of the table.

Which solution will meet these requirements?

Options:

A.

Use AWS Application Auto Scaling to increase capacity during the peak period. Purchase reserved RCUs and WCUs to match the average load.

B.

Configure on-demand capacity mode for the table.

C.

Configure DynamoDB Accelerator (DAX) in front of the table. Reduce the provisioned read capacity to match the new peak load on the table.

D.

Configure DynamoDB Accelerator (DAX) in front of the table. Configure on-demand capacity mode for the table.

Question 117

A company has purchased appliances from different vendors. The appliances all have loT sensors. The sensors send status information in the vendors' proprietary formats to a legacy application that parses the information into JSON. The parsing is simple, but each vendor has a unique format. Once daily, the application parses all the JSON records and stores the records in a relational database for analysis.

The company needs to design a new data analysis solution that can deliver faster and optimize costs.

Which solution will meet these requirements?

Options:

A.

Connect the loT sensors to AWS loT Core. Set a rule to invoke an AWS Lambda function to parse the information and save a .csv file to Amazon S3. Use AWS Glue to catalog the files. Use Amazon Athena and Amazon OuickSight for analysis.

B.

Migrate the application server to AWS Fargate, which will receive the information from loT sensors and parse the information into a relational format. Save the parsed information to Amazon Redshift for analysis.

C.

Create an AWS Transfer for SFTP server. Update the loT sensor code to send the information as a .csv file through SFTP to the server. Use AWS Glue to catalog the files. Use Amazon Athena for analysis.

D.

Use AWS Snowball Edge to collect data from the loT sensors directly to perform local analysis. Periodically collect the data into Amazon Redshift to perform global analysis.

Question 118

A company is planning to store a large number of archived documents and make the documents available to employees through the corporate intranet. Employees will access the system by connecting through a client VPN service that is attached to a VPC. The data must not be accessible to the public.

The documents that the company is storing are copies of data that is held on physical media elsewhere. The number of requests will be low. Availability and speed of retrieval are not concerns of the company.

Which solution will meet these requirements at the LOWEST cost?

Options:

A.

Create an Amazon S3 bucket. Configure the S3 bucket to use the S3 One Zone-Infrequent Access (S3 One Zone-IA) storage class as default. Configure the S3 bucket for website hosting. Create an S3 interface endpoint. Configure the S3 bucket to allow access only through that endpoint.

B.

Launch an Amazon EC2 instance that runs a web server. Attach an Amazon Elastic File System (Amazon EFS) file system to store the archived data in the EFS One Zone-Infrequent Access (EFS One Zone-IA) storage class Configure the instance security groups to allow access only from private networks.

C.

Launch an Amazon EC2 instance that runs a web server Attach an Amazon Elastic Block Store (Amazon EBS) volume to store the archived data. Use the Cold HDD (sc1) volume type. Configure the instance security groups to allow access only from private networks.

D.

Create an Amazon S3 bucket. Configure the S3 bucket to use the S3 Glacier Deep Archive storage class as default. Configure the S3 bucket for website hosting. Create an S3 interface endpoint. Configure the S3 bucket to allow access only through that endpoint.

Question 119

A company has an on-premises website application that provides real estate information for potential renters and buyers. The website uses a Java backend and a NOSQL MongoDB database to store subscriber data.

The company needs to migrate the entire application to AWS with a similar structure. The application must be deployed for high availability, and the company cannot make changes to the application

Which solution will meet these requirements?

Options:

A.

use an Amazon Aurora DB cluster as the database for the subscriber data. Deploy Amazon EC2 instances in an Auto Scaling group across multiple Availability Zones for the Java backend application.

B.

Use MongoDB on Amazon EC2 instances as the database for the subscriber data. Deploy EC2 instances in an Auto Scaling group in a single Availability Zone for the Java backend application.

C.

Configure Amazon DocumentD3 (with MongoDB compatibility) with appropriately sized instances in multiple Availability Zones as the database for the subscriber data. Deploy Amazon EC2 instances in an Auto Scaling group across multiple Availability Zones for the Java backend application.

D.

Configure Amazon DocumentDB (with MongoDB compatibility) in on-demand capacity mode in multiple Availability Zones as the database for the subscriber data. Deploy Amazon EC2 instances in an Auto Scaling group across multiple Availability Zones for the Java backend application.

Question 120

A company runs its application in the eu-west-1 Region and has one account for each of its environments development, testing, and production All the environments are running 24 hours a day 7 days a week by using stateful Amazon EC2 instances and Amazon RDS for MySQL databases The databases are between 500 GB and 800 GB in size

The development team and testing team work on business days during business hours, but the production environment operates 24 hours a day. 7 days a week. The company wants to reduce costs AH resources are tagged with an environment tag with either development, testing, or production as the key.

What should a solutions architect do to reduce costs with the LEAST operational effort?

Options:

A.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule that runs once every day Configure the rule to invoke one AWS Lambda function that starts or stops instances based on the tag day and time.

B.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule that runs every business day in the evening. Configure the rule to invoke an AWS Lambda function that stops instances based on the tag-Create a second EventBridge (CloudWatch Events) rule that runs every business day in the morning Configure the second rule to invoke another Lambda function that starts instances based on the tag

C.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule that runs every business day in the evening Configure the rule to invoke an AWS Lambda function that terminates instances based on the tag Create a second EventBridge (CloudWatch Events) rule that runs every business day in the morning Configure the second rule to invoke another Lambda function that restores the instances from their last backup based on the tag.

D.

Create an Amazon EventBridge rule that runs every hour. Configure the rule to invoke one AWS Lambda function that terminates or restores instances from their last backup based on the tag. day, and time.

Question 121

A company is hosting a three-tier web application in an on-premises environment. Due to a recent surge in traffic that resulted in downtime and a significant financial impact, company management has ordered that the application be moved to AWS. The application is written in .NET and has a dependency on a MySQL database A solutions architect must design a scalable and highly available solution to meet the demand of 200000 daily users.

Which steps should the solutions architect take to design an appropriate solution?

Options:

A.

Use AWS Elastic Beanstalk to create a new application with a web server environment and an Amazon RDS MySQL Multi-AZ DB instance The environment should launch a Network Load Balancer (NLB) in front of an Amazon EC2 Auto Scaling group in multiple Availability Zones Use an Amazon Route 53 alias record to route traffic from the company's domain to the NLB.

B.

Use AWS CloudFormation to launch a stack containing an Application Load Balancer (ALB) in front of an Amazon EC2 Auto Scaling group spanning three Availability Zones. The stack should launch a Multi-AZ deployment of an Amazon Aurora MySQL DB cluster with a Retain deletion policy. Use an Amazon Route 53 alias record to route traffic from the company's domain to the ALB

C.

Use AWS Elastic Beanstalk to create an automatically scaling web server environment that spans two separate Regions with an Application Load Balancer (ALB) in each Region. Create a Multi-AZ deployment of an Amazon Aurora MySQL DB cluster with a cross-Region read replica Use Amazon Route 53 with a geoproximity routing policy to route traffic between the two Regions.

D.

Use AWS CloudFormation to launch a stack containing an Application Load Balancer (ALB) in front of an Amazon ECS cluster of Spot Instances spanning three Availability Zones The stack should launch an Amazon RDS MySQL DB instance with a Snapshot deletion policy Use an Amazon Route 53 alias record to route traffic from the company's domain to the ALB

Question 122

A company runs a Java application that has complex dependencies on VMs that are in the company's data center. The application is stable. but the company wants to modernize the technology stack. The company wants to migrate the application to AWS and minimize the administrative overhead to maintain the servers.

Which solution will meet these requirements with the LEAST code changes?

Options:

A.

Migrate the application to Amazon Elastic Container Service (Amazon ECS) on AWS Fargate by using AWS App2Container. Store container images in Amazon Elastic Container Registry (Amazon ECR). Grant the ECS task execution role permission 10 access the ECR image repository. Configure Amazon ECS to use an Application Load Balancer (ALB). Use the ALB to interact with the application.

B.

Migrate the application code to a container that runs in AWS Lambda. Build an Amazon API Gateway REST API with Lambda integration. Use API Gateway to interact with the application.

C.

Migrate the application to Amazon Elastic Kubernetes Service (Amazon EKS) on EKS managed node groups by using AWS App2Container. Store container images in Amazon Elastic Container Registry (Amazon ECR). Give the EKS nodes permission to access the ECR image repository. Use Amazon API Gateway to interact with the application.

D.

Migrate the application code to a container that runs in AWS Lambda. Configure Lambda to use an Application Load Balancer (ALB). Use the ALB to interact with the application.

Question 123

A company has an organization that has many AWS accounts in AWS Organizations. A solutions architect must improve how the company manages common security group rules for the AWS accounts in the organization.

The company has a common set of IP CIDR ranges in an allow list in each AWS account to allow access to and from the company's on-premises network.

Developers within each account are responsible for adding new IP CIDR ranges to their security groups. The security team has its own AWS account. Currently, the security team notifies the owners of the other AWS accounts when changes are made to the allow list.

The solutions architect must design a solution that distributes the common set of CIDR ranges across all accounts.

Which solution meets these requirements with the LEAST amount of operational overhead?

Options:

A.

Set up an Amazon Simple Notification Service (Amazon SNS) topic in the security team's AWS account. Deploy an AWS Lambda function in each AWS account. Configure the Lambda function to run every time an SNS topic receives a message. Configure the Lambda function to take an IP address as input and add it to a list of security groups in the account. Instruct the security team to distribute changes by publishing messages to its SNS topic.

B.

Create new customer-managed prefix lists in each AWS account within the organization. Populate the prefix lists in each account with all internal CIDR ranges. Notify the owner of each AWS account to allow the new customer-managed prefix list IDs in their accounts in their security groups. Instruct the security team to share updates with each AWS account owner.

C.

Create a new customer-managed prefix list in the security team's AWS account. Populate the customer-managed prefix list with all internal CIDR ranges. Share the customer-managed prefix list with the organization by using AWS Resource Access Manager. Notify the owner of each AWS account to allow the new customer-managed prefix list ID in their security groups.

D.

Create an IAM role in each account in the organization. Grant permissions to update security groups. Deploy an AWS Lambda function in the security team's AWS account. Configure the Lambda function to take a list of internal IP addresses as input, assume a role in each organization account, and add the list of IP addresses to the security groups in each account.

Question 124

A retail company is hosting an ecommerce website on AWS across multiple AWS Regions. The company wants the website to be operational at all times for online purchases. The website stores data in an Amazon RDS for MySQL DB instance.

Which solution will provide the HIGHEST availability for the database?

Options:

A.

Configure automated backups on Amazon RDS. In the case of disruption, promote an automated backup to be a standalone DB instance. Direct database traffic to the promoted DB instance. Create a replacement read replica that has the promoted DB instance as its source.

B.

Configure global tables and read replicas on Amazon RDS. Activate the cross-Region scope. In the case of disruption, use AWS Lambda to copy the read replicas from one Region to another Region.

C.

Configure global tables and automated backups on Amazon RDS. In the case of disruption, use AWS Lambda to copy the read replicas from one Region to another Region.

D.

Configure read replicas on Amazon RDS. In the case of disruption, promote a cross-Region and read replica to be a standalone DB instance. Direct database traffic to the promoted DB instance. Create a replacement read replica that has the promoted DB instance as its source.

Page: 1 / 44
Total 435 questions