A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.
A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.
Which solution will meet these requirements with the LEAST operational overhead?
A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.
A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.
Which solution will meet this requirement?
A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joins across multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.
Which solution will meet these requirements in the MOST operationally efficient way?
A data engineer needs Amazon Athena queries to finish faster. The data engineer notices that all the files the Athena queries use are currently stored in uncompressed .csv format. The data engineer also notices that users perform most queries by selecting a specific column.
Which solution will MOST speed up the Athena query performance?
A company has a data warehouse in Amazon Redshift. To comply with security regulations, the company needs to log and store all user activities and connection activities for the data warehouse.
Which solution will meet these requirements?
A company is developing machine learning (ML) models. A data engineer needs to apply data quality rules to training data. The company stores the training data in an Amazon S3 bucket.
A manufacturing company wants to collect data from sensors. A data engineer needs to implement a solution that ingests sensor data in near real time.
The solution must store the data to a persistent data store. The solution must store the data in nested JSON format. The company must have the ability to query from the data store with a latency of less than 10 milliseconds.
Which solution will meet these requirements with the LEAST operational overhead?
A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.
The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.
Which solution will meet these requirements?
A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.
Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.
Which solution will meet these requirements MOST cost-effectively?
A manufacturing company uses AWS Glue jobs to process IoT sensor data to generate predictive maintenance models. A data engineer needs to implement automated data quality checks to identify temperature readings that are outside the expected range of -50°C to 150°C. The data quality checks must also identify records that are missing timestamp values.
The data engineer needs a solution that requires minimal coding and can automatically flag the specified issues.
Which solution will meet these requirements?
A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.
The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.
Which Amazon Redshift command will meet these requirements?
A company stores petabytes of data in thousands of Amazon S3 buckets in the S3 Standard storage class. The data supports analytics workloads that have unpredictable and variable data access patterns.
The company does not access some data for months. However, the company must be able to retrieve all data within milliseconds. The company needs to optimize S3 storage costs.
Which solution will meet these requirements with the LEAST operational overhead?
A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.
The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.
Which solution will meet these requirements with the LEAST operational overhead?
A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.
The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.
Which solution will meet these requirements MOST cost-effectively?
A data engineer needs to create an empty copy of an existing table in Amazon Athena to perform data processing tasks. The existing table in Athena contains 1,000 rows.
Which query will meet this requirement?
A company generates reports from 30 tables in an Amazon Redshift data warehouse. The data source is an operational Amazon Aurora MySQL database that contains 100 tables. Currently, the company refreshes all data from Aurora to Redshift every hour, which causes delays in report generation.
Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)
A company wants to use Apache Spark jobs that run on an Amazon EMR cluster to process streaming data. The Spark jobs will transform and store the data in an Amazon S3 bucket. The company will use Amazon Athena to perform analysis.
The company needs to optimize the data format for analytical queries.
Which solutions will meet these requirements with the SHORTEST query times? (Select TWO.)
A company needs to build a data lake in AWS. The company must provide row-level data access and column-level data access to specific teams. The teams will access the data by using Amazon Athena, Amazon Redshift Spectrum, and Apache Hive from Amazon EMR.
Which solution will meet these requirements with the LEAST operational overhead?
Files from multiple data sources arrive in an Amazon S3 bucket on a regular basis. A data engineer wants to ingest new files into Amazon Redshift in near real time when the new files arrive in the S3 bucket.
Which solution will meet these requirements?
A data engineer must ingest a source of structured data that is in .csv format into an Amazon S3 data lake. The .csv files contain 15 columns. Data analysts need to run Amazon Athena queries on one or two columns of the dataset. The data analysts rarely query the entire file.
Which solution will meet these requirements MOST cost-effectively?
A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.
Which data pipeline solutions will meet these requirements? (Choose two.)
A data engineer is launching an Amazon EMR duster. The data that the data engineer needs to load into the new cluster is currently in an Amazon S3 bucket. The data engineer needs to ensure that data is encrypted both at rest and in transit.
The data that is in the S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The data engineer has an Amazon S3 path that has a Privacy Enhanced Mail (PEM) file.
Which solution will meet these requirements?
A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.
Which combination of AWS services will implement a data mesh? (Choose two.)
A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.
Which solution will meet these requirements with the LEAST effort?
A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.
The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.
Which solutions will meet these requirements? (Choose two.)
A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.
An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.
A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.
Which combination of steps will meet these requirements? (Select TWO.)
A company uses AWS Glue jobs to implement several data pipelines. The pipelines are critical to the company.
The company needs to implement a monitoring mechanism that will alert stakeholders if the pipelines fail.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.
The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.
Which solution will meet these requirements?
A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.
Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.
Which solution will meet these requirements in the MOST operationally efficient way?
A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.
The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.
The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.
Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)
A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.
The data engineer's original query is as follows:
SELECT product_name, sum(sales_amount)
FROM sales_data
WHERE year = 2023
GROUP BY product_name
How should the data engineer modify the Athena query to meet these requirements?
A company manages an Amazon Redshift data warehouse. The data warehouse is in a public subnet inside a custom VPC A security group allows only traffic from within itself- An ACL is open to all traffic.
The company wants to generate several visualizations in Amazon QuickSight for an upcoming sales event. The company will run QuickSight Enterprise edition in a second AW5 account inside a public subnet within a second custom VPC. The new public subnet has a security group that allows outbound traffic to the existing Redshift cluster.
A data engineer needs to establish connections between Amazon Redshift and QuickSight. QuickSight must refresh dashboards by querying the Redshift cluster.
Which solution will meet these requirements?
A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.
The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.
Which solution will meet these requirements with the LEAST operational overhead?
A company is using an AWS Transfer Family server to migrate data from an on-premises environment to AWS. Company policy mandates the use of TLS 1.2 or above to encrypt the data in transit.
Which solution will meet these requirements?
A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.
Which solution will meet these requirements with the LEAST operational overhead?
A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.
An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.
If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.
Which solution will meet these requirements?
A company has a production AWS account that runs company workloads. The company's security team created a security AWS account to store and analyze security logs from the production AWS account. The security logs in the production AWS account are stored in Amazon CloudWatch Logs.
The company needs to use Amazon Kinesis Data Streams to deliver the security logs to the security AWS account.
Which solution will meet these requirements?
A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.
The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.
Which solution will MOST reduce the data processing time?
A company needs to implement a data mesh architecture for trading, risk, and compliance teams. Each team has its own data but needs to share views. They have 1,000+ tables in 50 Glue databases. All teams use Athena and Redshift, and compliance requires full auditing and PII access control.
A company uses an Amazon Redshift cluster that runs on RA3 nodes. The company wants to scale read and write capacity to meet demand. A data engineer needs to identify a solution that will turn on concurrency scaling.
Which solution will meet this requirement?
A data engineer is launching an Amazon EMR cluster. The data that the data engineer needs to load into the new cluster is currently in an Amazon S3 bucket. The data engineer needs to ensure that data is encrypted both at rest and in transit.
The data that is in the S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The data engineer has an Amazon S3 path that has a Privacy Enhanced Mail (PEM) file.
Which solution will meet these requirements?
A company is building a data lake for a new analytics team. The company is using Amazon S3 for storage and Amazon Athena for query analysis. All data that is in Amazon S3 is in Apache Parquet format.
The company is running a new Oracle database as a source system in the company's data center. The company has 70 tables in the Oracle database. All the tables have primary keys. Data can occasionally change in the source system. The company wants to ingest the tables every day into the data lake.
Which solution will meet this requirement with the LEAST effort?
A financial company wants to use Amazon Athena to run on-demand SQL queries on a petabyte-scale dataset to support a business intelligence (BI) application. An AWS Glue job that runs during non-business hours updates the dataset once every day. The BI application has a standard data refresh frequency of 1 hour to comply with company policies.
A data engineer wants to cost optimize the company's use of Amazon Athena without adding any additional infrastructure costs.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer is using an Apache Iceberg framework to build a data lake that contains 100 TB of data. The data engineer wants to run AWS Glue Apache Spark Jobs that use the Iceberg framework.
What combination of steps will meet these requirements? (Select TWO.)
A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.
To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.
Which solution will meet the requirements with the LEAST operational overhead?
A company receives marketing campaign data from a vendor. The company ingests the data into an Amazon S3 bucket every 40 to 60 minutes. The data is in CSV format. File sizes are between 100 KB and 300 KB.
A data engineer needs to set-up an extract, transform, and load (ETL) pipeline to upload the content of each file to Amazon Redshift.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer must use AWS services to ingest a dataset into an Amazon S3 data lake. The data engineer profiles the dataset and discovers that the dataset contains personally identifiable information (PII). The data engineer must implement a solution to profile the dataset and obfuscate the PII.
Which solution will meet this requirement with the LEAST operational effort?
A data engineer needs to use an Amazon QuickSight dashboard that is based on Amazon Athena queries on data that is stored in an Amazon S3 bucket. When the data engineer connects to the QuickSight dashboard, the data engineer receives an error message that indicates insufficient permissions.
Which factors could cause to the permissions-related errors? (Choose two.)
A company wants to migrate data from an Amazon RDS for PostgreSQL DB instance in the eu-east-1 Region of an AWS account named Account_A. The company will migrate the data to an Amazon Redshift cluster in the eu-west-1 Region of an AWS account named Account_B.
Which solution will give AWS Database Migration Service (AWS DMS) the ability to replicate data between two data stores?
A company implements a data mesh that has a central governance account. The company needs to catalog all data in the governance account. The governance account uses AWS Lake Formation to centrally share data and grant access permissions.
The company has created a new data product that includes a group of Amazon Redshift Serverless tables. A data engineer needs to share the data product with a marketing team. The marketing team must have access to only a subset of columns. The data engineer needs to share the same data product with a compliance team. The compliance team must have access to a different subset of columns than the marketing team needs access to.
Which combination of steps should the data engineer take to meet these requirements? (Select TWO.)
A company uses a variety of AWS and third-party data stores. The company wants to consolidate all the data into a central data warehouse to perform analytics. Users need fast response times for analytics queries.
The company uses Amazon QuickSight in direct query mode to visualize the data. Users normally run queries during a few hours each day with unpredictable spikes.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.
Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.
Which solution will meet this requirement?
A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.
Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)
A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.
The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to use Data Quality Definition Language (DQDL) rules in an AWS Glue Data Quality job.
Which rule will meet these requirements?
A company wants to combine data from multiple software as a service (SaaS) applications for analysis.
A data engineering team needs to use Amazon QuickSight to perform the analysis and build dashboards. A data engineer needs to extract the data from the SaaS applications and make the data available for QuickSight queries.
Which solution will meet these requirements in the MOST operationally efficient way?
A company builds a new data pipeline to process data for business intelligence reports. Users have noticed that data is missing from the reports.
A data engineer needs to add a data quality check for columns that contain null values and for referential integrity at a stage before the data is added to storage.
Which solution will meet these requirements with the LEAST operational overhead?
A company wants to migrate an application and an on-premises Apache Kafka server to AWS. The application processes incremental updates that an on-premises Oracle database sends to the Kafka server. The company wants to use the replatform migration strategy instead of the refactor strategy.
Which solution will meet these requirements with the LEAST management overhead?
A data engineer is configuring Amazon SageMaker Studio to use AWS Glue interactive sessions to prepare data for machine learning (ML) models.
The data engineer receives an access denied error when the data engineer tries to prepare the data by using SageMaker Studio.
Which change should the engineer make to gain access to SageMaker Studio?
A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.
Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.
Which combination of troubleshooting steps should the data engineer take? (Select TWO.)
A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.
The company wants to minimize the effort and time required to incorporate third-party datasets.
Which solution will meet these requirements with the LEAST operational overhead?
A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.
A data engineer notices that one of the fields in the source data includes values that are in JSON format.
How should the data engineer load the JSON data into the data warehouse with the LEAST effort?
A data engineer is building a new data pipeline that stores metadata in an Amazon DynamoDB table. The data engineer must ensure that all items that are older than a specified age are removed from the DynamoDB table daily.
Which solution will meet this requirement with the LEAST configuration effort?
A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.
The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.
Which AWS service should the company use to meet these requirements?
A company uses an organization in AWS Organizations to manage multiple AWS accounts. The company uses an enhanced fanout data stream in Amazon Kinesis Data Streams to receive streaming data from multiple producers. The data stream runs in Account A. The company wants to use an AWS Lambda function in Account B to process the data from the stream. The company creates a Lambda execution role in Account B that has permissions to access data from the stream in Account A.
What additional step must the company take to meet this requirement?
A company uses AWS Glue Apache Spark jobs to handle extract, transform, and load (ETL) workloads. The company has enabled logging and monitoring for all AWS Glue jobs. One of the AWS Glue jobs begins to fail. A data engineer investigates the error and wants to examine metrics for all individual stages within the job. How can the data engineer access the stage metrics?