Weekend Sale Limited Time Flat 70% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 70spcl

Amazon Web Services Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) Exam Practice Test

Page: 1 / 17
Total 174 questions

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A company stores logs in an Amazon S3 bucket. When a data engineer attempts to access several log files, the data engineer discovers that some files have been unintentionally deleted.

The data engineer needs a solution that will prevent unintentional file deletion in the future.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Manually back up the S3 bucket on a regular basis.

B.

Enable S3 Versioning for the S3 bucket.

C.

Configure replication for the S3 bucket.

D.

Use an Amazon S3 Glacier storage class to archive the data that is in the S3 bucket.

Question 2

A company has a data processing pipeline that includes several dozen steps. The data processing pipeline needs to send alerts in real time when a step fails or succeeds. The data processing pipeline uses a combination of Amazon S3 buckets, AWS Lambda functions, and AWS Step Functions state machines.

A data engineer needs to create a solution to monitor the entire pipeline.

Which solution will meet these requirements?

Options:

A.

Configure the Step Functions state machines to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

B.

Configure the AWS Lambda functions to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

C.

Use AWS CloudTrail to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications when a state machine fails to run or succeeds to run.

D.

Configure an Amazon EventBridge rule to react when the execution status of a state machine changes. Configure the rule to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications.

Question 3

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

Options:

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

Question 4

A data engineer needs to create a new empty table in Amazon Athena that has the same schema as an existing table named old-table.

Which SQL statement should the data engineer use to meet this requirement?

Options:

A.

Option A4

B.

Option B4

C.

Option C4

D.

Option D4

Question 5

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.

B.

Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.

C.

Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.

D.

Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

Question 6

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Question 7

Files from multiple data sources arrive in an Amazon S3 bucket on a regular basis. A data engineer wants to ingest new files into Amazon Redshift in near real time when the new files arrive in the S3 bucket.

Which solution will meet these requirements?

Options:

A.

Use the query editor v2 to schedule a COPY command to load new files into Amazon Redshift.

B.

Use the zero-ETL integration between Amazon Aurora and Amazon Redshift to load new files into Amazon Redshift.

C.

Use AWS Glue job bookmarks to extract, transform, and load (ETL) load new files into Amazon Redshift.

D.

Use S3 Event Notifications to invoke an AWS Lambda function that loads new files into Amazon Redshift.

Question 8

A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.

The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Aurora as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the Aurora data catalog. Schedule the Lambda functions to run periodically.

B.

Use the AWS Glue Data Catalog as the central metadata repository. Use AWS Glue crawlers to connect to multiple data stores and to update the Data Catalog with metadata changes. Schedule the crawlers to run periodically to update the metadata catalog.

C.

Use Amazon DynamoDB as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the DynamoDB data catalog. Schedule the Lambda functions to run periodically.

D.

Use the AWS Glue Data Catalog as the central metadata repository. Extract the schema for Amazon RDS and Amazon Redshift sources, and build the Data Catalog. Use AWS Glue crawlers for data that is in Amazon S3 to infer the schema and to automatically update the Data Catalog.

Question 9

A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)

Options:

A.

Select * from Employee where Region ID='North America';

B.

Select * from Employee where Region ID='North America' and Department ID=20;

C.

Select * from Employee where Department ID=20 and Region ID='North America';

D.

Select " from Employee where Role ID=50;

E.

Select * from Employee where Region ID='North America' and Role ID=50;

Question 10

A data engineer needs to onboard a new data producer into AWS. The data producer needs to migrate data products to AWS.

The data producer maintains many data pipelines that support a business application. Each pipeline must have service accounts and their corresponding credentials. The data engineer must establish a secure connection from the data producer's on-premises data center to AWS. The data engineer must not use the public internet to transfer data from an on-premises data center to AWS.

Which solution will meet these requirements?

Options:

A.

Instruct the new data producer to create Amazon Machine Images (AMIs) on Amazon Elastic Container Service (Amazon ECS) to store the code base of the application. Create security groups in a public subnet that allow connections only to the on-premises data center.

B.

Create an AWS Direct Connect connection to the on-premises data center. Store the service account credentials in AWS Secrets manager.

C.

Create a security group in a public subnet. Configure the security group to allow only connections from the CIDR blocks that correspond to the data producer. Create Amazon S3 buckets than contain presigned URLS that have one-day expiration dates.

D.

Create an AWS Direct Connect connection to the on-premises data center. Store the application keys in AWS Secrets Manager. Create Amazon S3 buckets that contain resigned URLS that have one-day expiration dates.

Question 11

A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use Amazon Athena to query the data. Set up AWS Lake Formation and create data filters to establish levels of access for the company's IAM roles. Assign each user to the IAM role that matches the user's PII access requirements.

B.

Use Amazon QuickSight to access the data. Use column-level security features in QuickSight to limit the PII that users can retrieve from Amazon S3 by using Amazon Athena. Define QuickSight access levels based on the PII access requirements of the users.

C.

Build a custom query builder UI that will run Athena queries in the background to access the data. Create user groups in Amazon Cognito. Assign access levels to the user groups based on the PII access requirements of the users.

D.

Create IAM roles that have different levels of granular access. Assign the IAM roles to IAM user groups. Use an identity-based policy to assign access levels to user groups at the column level.

Question 12

A company is planning to upgrade its Amazon Elastic Block Store (Amazon EBS) General Purpose SSD storage from gp2 to gp3. The company wants to prevent any interruptions in its Amazon EC2 instances that will cause data loss during the migration to the upgraded storage.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create snapshots of the gp2 volumes. Create new gp3 volumes from the snapshots. Attach the new gp3 volumes to the EC2 instances.

B.

Create new gp3 volumes. Gradually transfer the data to the new gp3 volumes. When the transfer is complete, mount the new gp3 volumes to the EC2 instances to replace the gp2 volumes.

C.

Change the volume type of the existing gp2 volumes to gp3. Enter new values for volume size, IOPS, and throughput.

D.

Use AWS DataSync to create new gp3 volumes. Transfer the data from the original gp2 volumes to the new gp3 volumes.

Question 13

A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.

B.

Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.

C.

Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.

D.

Use scripts to scan data elements and to assign data classifications based on the format of the data.

Question 14

A company has a production AWS account that runs company workloads. The company's security team created a security AWS account to store and analyze security logs from the production AWS account. The security logs in the production AWS account are stored in Amazon CloudWatch Logs.

The company needs to use Amazon Kinesis Data Streams to deliver the security logs to the security AWS account.

Which solution will meet these requirements?

Options:

A.

Create a destination data stream in the production AWS account. In the security AWS account, create an IAM role that has cross-account permissions to Kinesis Data Streams in the production AWS account.

B.

Create a destination data stream in the security AWS account. Create an IAM role and a trust policy to grant CloudWatch Logs the permission to put data into the stream. Create a subscription filter in the security AWS account.

C.

Create a destination data stream in the production AWS account. In the production AWS account, create an IAM role that has cross-account permissions to Kinesis Data Streams in the security AWS account.

D.

Create a destination data stream in the security AWS account. Create an IAM role and a trust policy to grant CloudWatch Logs the permission to put data into the stream. Create a subscription filter in the production AWS account.

Question 15

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

Options:

A.

Set up the sales team Bl cluster as a consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

Question 16

A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.

The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

AWS Glue workflows

B.

AWS Step Functions tasks

C.

AWS Lambda functions

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows

Question 17

A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.

An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.

A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Configure the Amazon Redshift Federated Query feature to query live transactional data that is in the PostgreSQL database.

B.

Configure Amazon Redshift Spectrum to query live transactional data that is in the PostgreSQL database.

C.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 by using the UNLOAD command. Delete the old data from the Redshift cluster. Configure Amazon Redshift Spectrum to access historical data in Amazon S3.

D.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 Glacier Flexible Retrieval by using the UNLOAD command. Delete the old data from the Redshift duster. Configure Redshift Spectrum to access historical data from S3 Glacier Flexible Retrieval.

E.

Create a materialized view in Amazon Redshift that combines live, current, and historical data from different sources.

Question 18

A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.

The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to useData Quality Definition Language (DQDL)rules in an AWS Glue Data Quality job.

Which rule will meet these requirements?

Options:

A.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 1.0

B.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 1.0

C.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 100

D.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 100

Question 19

A data engineer is building an automated extract, transform, and load (ETL) ingestion pipeline by using AWS Glue. The pipeline ingests compressed files that are in an Amazon S3 bucket. The ingestion pipeline must support incremental data processing.

Which AWS Glue feature should the data engineer use to meet this requirement?

Options:

A.

Workflows

B.

Triggers

C.

Job bookmarks

D.

Classifiers

Question 20

A data engineer is configuring Amazon SageMaker Studio to use AWS Glue interactive sessions to prepare data for machine learning (ML) models.

The data engineer receives an access denied error when the data engineer tries to prepare the data by using SageMaker Studio.

Which change should the engineer make to gain access to SageMaker Studio?

Options:

A.

Add the AWSGlueServiceRole managed policy to the data engineer's IAM user.

B.

Add a policy to the data engineer's IAM user that includes the sts:AssumeRole action for the AWS Glue and SageMaker service principals in the trust policy.

C.

Add the AmazonSageMakerFullAccess managed policy to the data engineer's IAM user.

D.

Add a policy to the data engineer's IAM user that allows the sts:AddAssociation action for the AWS Glue and SageMaker service principals in the trust policy.

Question 21

A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.

A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.

Which actions should the data engineer take to meet this requirement? (Choose two.)

Options:

A.

Use the Performance Insights feature of Amazon RDS to identify queries that have high CPU utilization. Optimize the problematic queries.

B.

Modify the database schema to include additional tables and indexes.

C.

Reboot the RDS DB instance once each week.

D.

Upgrade to a larger instance size.

E.

Implement caching to reduce the database query load.

Question 22

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

Options:

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

Question 23

A data engineer must ingest a source of structured data that is in .csv format into an Amazon S3 data lake. The .csv files contain 15 columns. Data analysts need to run Amazon Athena queries on one or two columns of the dataset. The data analysts rarely query the entire file.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use an AWS Glue PySpark job to ingest the source data into the data lake in .csv format.

B.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to ingest the data into the data lake in JSON format.

C.

Use an AWS Glue PySpark job to ingest the source data into the data lake in Apache Avro format.

D.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to write the data into the data lake in Apache Parquet format.

Question 24

A company wants to ingest streaming data into an Amazon Redshift data warehouse from an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. A data engineer needs to develop a solution that provides low data access time and that optimizes storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an external schema that maps to the MSK cluster. Create a materialized view that references the external schema to consume the streaming data from the MSK topic.

B.

Develop an AWS Glue streaming extract, transform, and load (ETL) job to process the incoming data from Amazon MSK. Load the data into Amazon S3. Use Amazon Redshift Spectrum to read the data from Amazon S3.

C.

Create an external schema that maps to the streaming data source. Create a new Amazon Redshift table that references the external schema.

D.

Create an Amazon S3 bucket. Ingest the data from Amazon MSK. Create an event-driven AWS Lambda function to load the data from the S3 bucket to a new Amazon Redshift table.

Question 25

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling betweenone to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Question 26

A company stores details about transactions in an Amazon S3 bucket. The company wants to log all writes to the S3 bucket into another S3 bucket that is in the same AWS Region.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the event to Amazon Kinesis Data Firehose. Configure Kinesis Data Firehose to write the event to the logs S3 bucket.

B.

Create a trail of management events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

C.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the events to the logs S3 bucket.

D.

Create a trail of data events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

Question 27

An ecommerce company processes millions of orders each day. The company uses AWS Glue ETL to collect data from multiple sources, clean the data, and store the data in an Amazon S3 bucket in CSV format by using the S3 Standard storage class. The company uses the stored data to conduct daily analysis.

The company wants to optimize costs for data storage and retrieval.

Which solution will meet this requirement?

Options:

A.

Transition the data to Amazon S3 Glacier Flexible Retrieval.

B.

Transition the data from Amazon S3 to an Amazon Aurora cluster.

C.

Configure AWS Glue ETL to transform the incoming data to Apache Parquet format.

D.

Configure AWS Glue ETL to use Amazon EMR to process incoming data in parallel.

Question 28

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Question 29

A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Write a custom Python application. Host the application on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

B.

Write a PySpark ETL script. Host the script on an Amazon EMR cluster.

C.

Write an AWS Glue PySpark job. Use Apache Spark to transform the data.

D.

Write an AWS Glue Python shell job. Use pandas to transform the data.

Question 30

A retail company is expanding its operations globally. The company needs to use Amazon QuickSight to accurately calculate currency exchange rates for financial reports.The company has an existing dashboard that includes a visual that is based on an analysis of a dataset that contains global currency values and exchange rates.

A data engineer needs to ensure that exchange rates are calculated with a precision of four decimal places. The calculations must be precomputed. The data engineer must materialize results in QuickSight super-fast, parallel, in-memory calculation engine (SPICE).

Which solution will meet these requirements?

Options:

A.

Define and create the calculated field in the dataset.

B.

Define and create the calculated field in the analysis.

C.

Define and create the calculated field in the visual.

D.

Define and create the calculated field in the dashboard.

Question 31

A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.

The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.

Which solutions will meet these requirements? (Select TWO.)

Options:

A.

Use Amazon Redshift ML to generate inventory recommendations.

B.

Use SQL to invoke a remote SageMaker endpoint for prediction.

C.

Use Amazon Redshift ML to schedule regular data exports for offline model training.

D.

Use SageMaker Autopilot to create inventory management dashboards in Amazon Redshift.

E.

Use Amazon Redshift as a file storage system to archive old inventory management reports.

Question 32

A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.

The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.

Which solution will MOST reduce the data processing time?

Options:

A.

Use AWS Lambda to group the raw input files into larger files. Write the larger files back to Amazon S3. Use AWS Glue to process the files. Load the files into the Amazon Redshift tables.

B.

Use the AWS Glue dynamic frame file-grouping option to ingest the raw input files. Process the files. Load the files into the Amazon Redshift tables.

C.

Use the Amazon Redshift COPY command to move the raw input files from Amazon S3 directly into the Amazon Redshift tables. Process the files in Amazon Redshift.

D.

Use Amazon EMR instead of AWS Glue to group the raw input files. Process the files in Amazon EMR. Load the files into the Amazon Redshift tables.

Question 33

A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.

The company needs the workflow to perform specific steps based on the content of the incoming data.

Which Step Functions state type should the company use to meet this requirement?

Options:

A.

Parallel

B.

Choice

C.

Task

D.

Map

Question 34

A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Create a separate table for each country's customer data. Provide access to each analyst based on the country that the analyst serves.

B.

Register the S3 bucket as a data lake location in AWS Lake Formation. Use the Lake Formation row-level security features to enforce the company's access policies.

C.

Move the data to AWS Regions that are close to the countries where the customers are. Provide access to each analyst based on the country that the analyst serves.

D.

Load the data into Amazon Redshift. Create a view for each country. Create separate 1AM roles for each country to provide access to data from each country. Assign the appropriate roles to the analysts.

Question 35

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

Options:

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

Question 36

A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.

The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.

Which solution will meet this requirement?

Options:

A.

Update the AWS Glue security group to allow inbound traffic from the Amazon S3 VPC gateway endpoint.

B.

Configure an S3 bucket policy to explicitly grant the AWS Glue job permissions to access the S3 bucket.

C.

Review the AWS Glue job code to ensure that the AWS Glue connection details include a fully qualified domain name.

D.

Verify that the VPC's route table includes inbound and outbound routes for the Amazon S3 VPC gateway endpoint.

Question 37

A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."

The data engineer needs to identify the source of the error and provide a solution.

Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)

Options:

A.

Scale out the workers vertically to address data skewness.

B.

Use the Spark UI and AWS Glue metrics to monitor data skew in the Spark executors.

C.

Scale out the number of workers horizontally to address data skewness.

D.

Enable the --write-shuffle-files-to-s3 job parameter. Use the salting technique.

E.

Use error logs in Amazon CloudWatch to monitor data skew.

Question 38

A retail company stores customer data in an Amazon S3 bucket. Some of the customer data contains personally identifiable information (PII) about customers. The company must not share PII data with business partners.

A data engineer must determine whether a dataset contains PII before making objects in the dataset available to business partners.

Which solution will meet this requirement with the LEAST manual intervention?

Options:

A.

Configure the S3 bucket and S3 objects to allow access to Amazon Macie. Use automated sensitive data discovery in Macie.

B.

Configure AWS CloudTrail to monitor S3 PUT operations. Inspect the CloudTrail trails to identify operations that save PII.

C.

Create an AWS Lambda function to identify PII in S3 objects. Schedule the function to run periodically.

D.

Create a table in AWS Glue Data Catalog. Write custom SQL queries to identify PII in the table. Use Amazon Athena to run the queries.

Question 39

A company uses Amazon Redshift for its data warehouse. The company must automate refresh schedules for Amazon Redshift materialized views.

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Use Apache Airflow to refresh the materialized views.

B.

Use an AWS Lambda user-defined function (UDF) within Amazon Redshift to refresh the materialized views.

C.

Use the query editor v2 in Amazon Redshift to refresh the materialized views.

D.

Use an AWS Glue workflow to refresh the materialized views.

Question 40

A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS CloudHSM cluster to store the encryption keys. Configure the process that writes to Amazon S3 to make calls to CloudHSM to encrypt and decrypt the objects. Deploy an IAM policy that restricts access to the CloudHSM cluster.

B.

Use server-side encryption with customer-provided keys (SSE-C) to encrypt the objects that contain customer information. Restrict access to the keys that encrypt the objects.

C.

Use server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the KMS keys that encrypt the objects.

D.

Use server-side encryption with Amazon S3 managed keys (SSE-S3) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the Amazon S3 managed keys that encrypt the objects.

Question 41

An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.

The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

AWS Lambda

B.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

C.

AWS Step Functions

D.

AWS Glue

Question 42

A data engineer needs to create an Amazon Athena table based on a subset of data from an existing Athena table named cities_world. The cities_world table contains cities that are located around the world. The data engineer must create a new table named cities_us to contain only the cities from cities_world that are located in the US.

Which SQL statement should the data engineer use to meet this requirement?

Question # 42

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Question 43

A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.

Which AWS service or feature will meet these requirements MOST cost-effectively?

Options:

A.

AWS Step Functions

B.

AWS Glue workflows

C.

AWS Glue Studio

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

Question 44

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

Question 45

A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.

The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.

Which solution will meet these requirements?

Options:

A.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Configure the output destination to a new path in the existing S3 bucket.

B.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Specify a database name for the output.

C.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Specify a database name for the output.

D.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Configure the output destination to a new path in the existing S3 bucket.

Question 46

A company has a data warehouse that contains a table that is named Sales. The company stores the table in Amazon Redshift The table includes a column that is named city_name. The company wants to query the table to find all rows that have a city_name that starts with "San" or "El."

Which SQL query will meet this requirement?

Options:

A.

Select * from Sales where city_name - '$(San|EI)";

B.

Select * from Sales where city_name -, ^(San|EI) *';

C.

Select * from Sales where city_name - '$(San&EI)";

D.

Select * from Sales where city_name -, ^(San&EI)";

Question 47

A company uses a variety of AWS and third-party data stores. The company wants to consolidate all the data into a central data warehouse to perform analytics. Users need fast response times for analytics queries.

The company uses Amazon QuickSight in direct query mode to visualize the data. Users normally run queries during a few hours each day with unpredictable spikes.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Redshift Serverless to load all the data into Amazon Redshift managed storage (RMS).

B.

Use Amazon Athena to load all the data into Amazon S3 in Apache Parquet format.

C.

Use Amazon Redshift provisioned clusters to load all the data into Amazon Redshift managed storage (RMS).

D.

Use Amazon Aurora PostgreSQL to load all the data into Aurora.

Question 48

A data engineer needs to maintain a central metadata repository that users access through Amazon EMR and Amazon Athena queries. The repository needs to provide the schema and properties of many tables. Some of the metadata is stored in Apache Hive. The data engineer needs to import the metadata from Hive into the central metadata repository.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use Amazon EMR and Apache Ranger.

B.

Use a Hive metastore on an EMR cluster.

C.

Use the AWS Glue Data Catalog.

D.

Use a metastore on an Amazon RDS for MySQL DB instance.

Question 49

A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.

Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.

Which combination of solutions will meet these requirements? (Select TWO.)

Options:

A.

Use AWS Glue DataBrew to perform extract, transform, and load (ETL) tasks that mask the PII data before analysis.

B.

Use Amazon GuardDuty to monitor access patterns for the PII data that is used in the engineering pipeline.

C.

Configure an Amazon Made discovery job for the S3 bucket.

D.

Use AWS Identity and Access Management (IAM) to manage permissions and to control access to the PII data.

E.

Write custom scripts in an application to mask the PII data and to control access.

Question 50

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

Options:

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Question 51

A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.

The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.

Which solution will meet these requirements?

Options:

A.

Use AWS Config rules to detect violations of the data access policy. Set up compliance alarms.

B.

Use Amazon CloudWatch metrics to gather object-level metrics. Set up CloudWatch alarms.

C.

Use AWS CloudTrail to track object-level events for the S3 bucket. Forward events to Amazon CloudWatch to set up CloudWatch alarms.

D.

Use Amazon S3 server access logs to monitor access to the bucket. Forward the access logs to an Amazon CloudWatch log group. Use metric filters on the log group to set up CloudWatch alarms.

Page: 1 / 17
Total 174 questions